
ZeroSum: User Space Monitoring of Resource Utilization and
Contention on Heterogeneous HPC Systems

Kevin A. Huck
Allen D. Malony

khuck@cs.uoregon.edu
malony@cs.uoregon.edu

OACISS Institute, University of Oregon
Eugene, Oregon, USA

ABSTRACT
Heterogeneous High Performance Computing (HPC) systems are
highly specialized, complex, powerful, and expensive systems. Ef-
ficient utilization of these systems requires monitoring tools to
confirm that users have configured their jobs, workflows, and ap-
plications correctly to consume the limited allocations they have
been awarded. Historically system monitoring tools are designed
for – and only available to – system administrators and facilities
personnel to ensure that the system is healthy, utilized, and oper-
ating within acceptable parameters. However, there is a demand
for user space monitoring capabilities to address the configuration
validation and optimization problem. In this paper, we describe a
prototype tool, ZeroSum, designed to provide user space monitor-
ing of application processes, lightweight processes (threads), and
hardware resources on heterogeneous, distributed HPC systems.
ZeroSum is designed to be used either as a limited-use porting tool
or as an always-on monitoring library.

CCS CONCEPTS
• Software and its engineering → Software notations and
tools; •Computingmethodologies→Parallel computingmethod-
ologies; • Computer systems organization → Multicore archi-
tectures.

KEYWORDS
parallel computing, resource utilization, resource contention, sched-
uling

ACM Reference Format:
Kevin A. Huck and Allen D. Malony. 2023. ZeroSum: User Space Monitoring
of Resource Utilization and Contention on Heterogeneous HPC Systems
. In Proceedings of 10th International Workshop on HPC User Support Tools
(HUST-23). ACM, New York, NY, USA, 11 pages. https://doi.org/10.1145/
3624062.3624145

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
HUST-23, November 12, 2023, Denver, USA
© 2023 Association for Computing Machinery.
ACM ISBN 978-1-4503-XXXX-X/18/06. . . $15.00
https://doi.org/10.1145/3624062.3624145

1 INTRODUCTION
Research on HPC performance tools can broadly be regarded as
application-oriented or systems-oriented. Most of the application-
oriented tools are concerned with measurement and analysis of an
application’s performance to identify inefficiencies and opportuni-
ties for optimization. In our experience, performance optimization
broadly comes down to three types of changes. The first type is
wholesale algorithmic replacement, where one implementation is
replaced with another that has better theoretical complexity, higher
available concurrency, or maps to the available hardware better.
Empirical analysis can help to characterize these algorithmic perfor-
mance problems. The second type is a code transformation change
where an algorithm’s implementation is modified to improve data
locality, reduce data movement, minimize delay, and so on. Finally,
there are environmental or configuration changes to how an ap-
plication is launched and scheduled on a given platform. Without
modifying the software, these changes can help increase concur-
rency, reduce contention, improve utilization, and reduce overall
time to solution.

In contrast, systems-oriented performance tools are less con-
cerned about application-specific performance and more focused
on monitoring of system status and observing how various com-
ponents of the system are operating. Practically all HPC systems
have some tool support for capturing resource utilization, collecting
memory or network actions, recording system call activities, track-
ing process-level behavior, and so on, as well as interfaces to get ac-
cess this information during execution. While application-oriented
performance tools can access (to the extent possible) systems-
oriented monitoring support, it has mostly be in an ad hoc manner.

In this paper we consider that third class of performance opti-
mization – what we will call configuration optimization – and the
performance technology that could be created to better address
the outcomes desired. We suggest that configuration optimization
(and/or validation) represents, in fact, "low hanging fruit" that can
be automated, but to our knowledge has not yet. However, it in-
volves being able to capture system-side performance information
and correlate it with available application performance. Unsurpris-
ingly, this requires monitoring both the system and the application
at runtime. Any performancemeasurement requires some resources
to implement.We speculate that application-oriented tools are often
reluctant to engage with any degree of monitoring, especially the
system. Why? Because it takes additional resources to accomplish
(e.g., running background daemons, tracking system calls), poten-
tially limiting application execution and impacting its performance.
Our intent is to show that the monitoring we propose is necessary

https://orcid.org/0000-0001-7064-8417
https://orcid.org/0000-0002-9598-7201
https://doi.org/10.1145/3624062.3624145
https://doi.org/10.1145/3624062.3624145
https://doi.org/10.1145/3624062.3624145

HUST-23, November 12, 2023, Denver, USA Huck and Malony

and useful for configuration optimization, while imposing less than
0.5% overhead. Indeed, we call the tool developed ZeroSum because
its use will help users effectively utilize and distribute the finite set
of resources at their disposal without significant cost. The ZeroSum
prototype is open-source, and freely available on GitHub 1.

2 BACKGROUND AND MOTIVATION
Our interest in configuration optimization is with respect to ap-
plication performance and we see monitoring as a necessity for a
solution. In this context, the concept of monitoring includes both
real-time access to high-level application performance data as well
as monitoring of system status data. For the application, access to
the performance data is essential for tasks like run-time optimiza-
tion, computational steering and other types of adaptive computing.
For the system, users would like to know how the system is respond-
ing to the demands of the application, how that system data is cor-
related with available application performance data, and whether
there is evidence of low utilization or contention. In this paper, we
are mostly focused on the later concept, however we will discuss
how the data collected by ZeroSum could be integrated into existing
performance tools to correlate with application performance data.

In general, we have identified seven different (potentially over-
lapping) reasons why a user would wish to monitor their applica-
tion. All have relevance to configuration optimization issues. These
reasons include:

• Sanity check
• Check for misconfiguration
• Check for utilization
• Confirmation of expected HW/OS behavior
• Identify cause of failure
• Adaptation
• Identify system failures

Sanity check: Nearly all simulation developers include some kind
of logging mechanism, either to standard output / error or to log
files. The motivations for this output can include confirmation that
the program is making progress, curiosity on what phase/iteration
the application is in, or just impatience – not wanting to wait for
the application exits to see whether the run experienced a failure
or was successful.
Check for misconfiguration: With the popularity and complex-
ity of heterogeneous HPC platforms comes higher complexity
with respect to job launch and control systems such as Slurm[43],
PBS[14], Alps[28], Torque[19] and Flux[3]. Due to the individual
needs of each application, the default – or possibly even the rec-
ommended – settings for job launch may be near-optimal for gen-
eral cases, but they could be sub-optimal for unconventional cases.
At a high level, these systems control process placement, logical-
physical MPI mappings, resource assignments, and constraints for
each process. At a finer detail, environment variables and config-
uration files control process and light weight process (LWP, a.k.a.
thread) placement to sockets, non-uniform memory access (NUMA)
domains, cache regions, cores, and hardware threads (HWT). GPU
mapping is also performed, and ideally GPUs will be assigned to
processes that share a NUMA domain or other local physical con-
nection. The primary concerns for all these assignments involve
1https://github.com/khuck/zerosum

Figure 1: OLCF Summit node diagram [31]. Note that the
core ordering in the figure skips from 83 to 88 due to a re-
served core for the operating system.

Figure 2: OLCF Frontier simplified node diagram [30].
Note that the GPU indexing [[4, 5], [2, 3], [6, 7], [0, 1]] is non-
intuitively associated with the NUMA domain ordering
[0, 1, 2, 3].

avoiding both under- and over-subscribing resources and optimiz-
ing for data locality. Under-subscription will lead to wasted hard-
ware, energy and allocation time. Over-subscription will lead to
increased contention with no realized benefit or worse – longer
execution times. Inefficient process mapping can lead to communi-
cation latency imbalances between ranks that communicate large
data volumes and/or frequently. In summary, because HPC systems
are by necessity so flexible and configurable, they are complex and
difficult to correctly configure for the average user. Facilities try
to provide adequate documentation for each system, but the vari-
ability between architectures requires application users to become
intimately familiar with the network topologies and node diagrams
for each system they use. Whether they should be expected to be
experts in the systems is debatable.

Figures 1-3 show node diagrams from four different DOE HPC
systems, each with varying levels of detail. Even when provided

ZeroSum: User Space Monitoring of Resource Utilization and Contention on Heterogeneous HPC Systems HUST-23, November 12, 2023, Denver, USA

Figure 3: NERSC Perlmutter node diagram [27] (left), and
ANL Aurora future node diagram [26] (right). Note that no
information is given with respect to GPU ordering, CPU
core ordering or how NUMA domains or cache regions are
associated with the GPUs (if they are).

Figure 4: htop running on a Linux system. The interface in-
cludes information about hardware thread utilization, load,
and currently executing processes. Alternative views also
show each light weight process (LWP).

information on core indexes, NUMA domains and GPU bus con-
nections, it can be difficult to get an efficient configuration – in
particular when the scheduler reserves one or more cores for system
processes, and when GPU index, hardware thread, and CPU core
index sorting are not intuitive to the user, as in the case of Figure 2
where GPU/GCD 0 is physically connected to NUMA domain 3,
containing cores starting with index 48 (or 49 if the first core in the
L3 region is reserved by Slurm for system processes).
Check for utilization: Related to the configuration issue, users
want to effectively utilize the resources at their disposal. Desktop
computer users are familiar with command line utilities such as
Linux top and htop [21, 23] (shown in Figure 4) and ps, and even
graphical interfaces such as MenuMeters [17], macOS Activity Mon-
itor [5], Windows Resource Monitor [25] and others. HPC facility
administrators have access to system monitoring tools like Gan-
glia [24] and Puppet Console [36], but access to that telemetry data
is typically unavailable to users. Users are allocated a fixed number
of CPU hours to use, and poorly utilized hardware will lead to
wasted allocation time. Depending on whether a given application
is CPU- or memory-bound the user may wish to assign more than

one operating system thread per core by pinning them to hardware
threads. In memory-bound applications, additional contention for
an overworked memory interface will lead to delays in execution
and longer run times. CPU-bound applications that only schedule
one thread per core may be missing an opportunity to better utilize
additional hardware threads. GPU accelerated applications may not
be fully utilizing the GPUs assigned to each process. The htop view
in Figure 4 represents a subset of what a user would like to see,
but for all nodes in a given allocation, and for all resources at their
disposal.
Confirmation of expected hardware/software behavior: Ker-
nel monitoring is quite common when it comes to detailed system
performance measurement and analysis. The existence of tools
like strace, ptrace, dtrace, dtruss, ftrace, KUtrace, kprobe,
system-tap, eBPF, bpftrace, and many others show robust inter-
est in monitoring what the operating system, kernel and hardware
are doing in response to system calls. Unfortunately all of these
tools require root level access, kernel modifications/patches, and/or
additional processes to monitor the system calls of a given applica-
tion. Specialized monitoring of subsystems such as Darshan [11]
for filesystem I/O provide a window into how well the system is
responding to application needs. These are all valuable tools in the
hands of system experts, but users may want to know:

• Did I request the “right thing” from the hardware and/or
operating system?

• Will I soon run out of a limited resource?
• Do I have alternatives?

For example, Porterfield et al. [34] showed that monitoring the
demands on a limited resource (the memory controller) could lead
to adaptive thread concurrency control to avoid overtaxing the
resource and increasing response latency. While the described solu-
tion requires root access to read an off-core hardware counter, there
are potentially other situations where monitoring the hardware/OS
can help avoid inefficiencies, contention, or failures.
Identify cause of failure: In the event that some unexpected
problem (increased latency, reduced throughput, performance vari-
ability, contention, application termination) happens, users would
obviously like some data on what may have caused the problem.
Some of the unexpected but explainable problems include increased
or variable network and disk latency, data transfer variability, or re-
source exhaustion. The exhausted resource could be system queue
depths, hardware limits like CPU or GPU physical memory, or file
system quotas. Bhatele et al. [6] showed that users cannot avoid
“noisy neighbors” (or being one themselves), but that they can mit-
igate their effects. Mitigating these effects requires some form of
monitoring.
Adaptation: Computational steering should not be done blindly,
and any attempt to adapt to changing situational changes or evolv-
ing data situations requires situational awareness. At a minimum,
feedback driven optimizations or control systems requires some
observation to drive and confirm the choices. While the monitoring
performed by ZeroSum likely is not sufficiently detailed or specific
enough to support an adaptive system, in some cases it may be
useful.
Identify system failures: The authors would like to clearly state
that identifying system failures is beyond the scope of this work –

HUST-23, November 12, 2023, Denver, USA Huck and Malony

the system administrators at HPC facilities are very good at this
already. That said, users would like to confirm that nothing in the
user code has caused the failure. Providing the users with a tool that
they can use to eliminate other possibilities is useful in reporting
actual system failures.

In summary, users would like to know that they have configured
their application – with its particular requirements – correctly on
a given platform – with its particular idiosyncrasies. Prior to any
parametric performance study, a performance engineer needs to be
confident that they have correctly configured the job launch and
scheduling parameters, and are effectively utilizing the available
hardware. Before fine-tuning an algorithm for a solver library on a
new architecture, a computational scientist or applied mathemati-
cian would like to know that they are working with a meaningful
use case, and that includes configuring the hardware and operating
system correctly.

The main challenges from a tool standpoint are deciding what
is going to be captured by the monitoring system (not everything
should) and how the application and system will interact to control
the monitor operations and manage the data it produces.

3 IMPLEMENTATION
The implementation of ZeroSum was inspired by test programs
like the Hello_jsrun [42] sample program presented in ORNL
hackathons and tutorials. Unlike that program, ZeroSum is designed
to be used with any HPC simulation and detect the process and
thread binding behavior of any arbitrary HPC application. We see
the evolutional trajectory of a tool like ZeroSum to include the
following phases:

(1) Detect the initial configuration of the application.
(2) Evaluate the configuration to detect misconfigurations.
(3) Provide runtime feedback to the user that the program is

progressing.
(4) Provide a report of how effectively the hardware was utilized.
(5) Provide a report of how much contention was identified in

the execution.
(6) Provide a way to export the observed data to other tools that

can perform computational steering, if desired.
The design of ZeroSum takes into consideration the given require-
ments for the community of potential users. Those requirements
are to provide a generalizable, portable, automatic detection of con-
figuration and evaluate that configuration with a comparison to
“known good” configurations. The user needs something akin to
warning lights and useful gauges (with explanation), and with very
low overhead. The prototype of ZeroSum described in this paper
includes at least partial support for phases 1, 3, 4, 5, 6.

3.1 Configuration Detection
ZeroSum itself is a C++ library that is injected into an application
process space using the standard LD_PRELOAD technique of provid-
ing the operating system with the path to a library that should
be loaded into memory prior to loading the application. That li-
brary has multiple ways to initialize itself, either by defining an
alternate implementation of the __libc_start_main() function –
effectively wrapping the main() function – or by defining a static
global constructor that will be executed when the library is loaded.

Listing 1: Sample hwloc output when executed on a com-
pute node with a single Intel® Core™ i7-1165G7 CPU with
four cores and two processing units (PU, also known as hard-
ware threads) per core. Note how the logical index (L#) of the
HWT/PU is different than the operating system index (P#),
leading to potential confusion for the user.
HWLOC Node topo logy :
Machine L#0

Package L#0
L3Cache L#0 12MB

L2Cache L#0 1280KB
L1Cache L#0 48KB

Core L#0
PU L#0 P#0
PU L#1 P#4

L2Cache L#1 1280KB
L1Cache L#1 48KB

Core L#1
PU L#2 P#1
PU L#3 P#5

L2Cache L#2 1280KB
L1Cache L#2 48KB

Core L#2
PU L#4 P#2
PU L#5 P#6

L2Cache L#3 1280KB
L1Cache L#3 48KB

Core L#3
PU L#6 P#3
PU L#7 P#7

ZeroSum provides both options, depending on which method works
reliably with a given operating system. During initialization, Zero-
Sumwill detect the resources that have been assigned to the process
by querying the /proc/[self|pid]/status [22] virtual filesystem
data to query the cores and/or hardware threads assigned to the
process. The /proc/meminfo [22] file is parsed to query the data
relevant to the memory subsystem such as the total memory avail-
able. If the application uses theMPI library, the hostname and global
communicator rank and size are queried. A process-specific log file
is opened and the initial configuration of the process is written to
disk. An asynchronous thread is spawned by ZeroSum to perform
background tasks (described later this section) and assigned to the
last hardware thread assigned to this process by default (this is
user configurable). Optionally, a signal handler is installed in or-
der to report a backtrace in the unlikely event of a segmentation
violation, bus error, or other abnormal exit. The hardware data
model is organized as a tree-based class hierarchy consisting of the
compute node, hardware threads (HWT), and GPUs. The software
is organized as a tree-based hierarchy of processes and lightweight
processes (LWP), commonly referred to as “threads”.

If available, the Portable Hardware Locality (hwloc) [10] library
is used to query the topology for the available hardware. Hwloc is

ZeroSum: User Space Monitoring of Resource Utilization and Contention on Heterogeneous HPC Systems HUST-23, November 12, 2023, Denver, USA

integrated with several MPI implementations and job schedulers
to assign affinity lists for parallel and distributed applications. [35].
Currently, ZeroSum will only utilize hwloc to query and print the
hardware topology for the node, similar to the output from the
hwloc lstopo command. However, for users who may have never
used lstopo or known of its existence, it is helpful to see how cores
are distributed among NUMA domains, which caches are shared
between cores, and how HWT are indexed. This information can
help the user in choosing an efficient thread placement strategy.
In the future, hwloc could be used by ZeroSum to automatically
(re)assign threads to HWT based on detection of bad configurations.
Listing 1 shows sample output from ZeroSum when executing on a
test system of four cores with two HWT each.

3.1.1 POSIX Threads. The asynchronous thread launched by Zero-
Sum is used to query the state of all the threads in the application.
One way to capture thread creation on POSIX systems is to wrap
or intercept the pthread_create() function, however there are
ways to circumvent that approach. For example, an application or
library might use the dlsym() function to query for that symbol,
assign it to a function pointer and then call it. As convoluted as
that process is, it allows libraries with threaded and non-threaded
implementations to co-exist in the same library without imposing a
libpthread dependency. Regardless, there is a much simpler method
to detect and monitor threads. The /proc [22] virtual filesystem
provides the /proc/[self|pid]/task [22] directory which con-
tains all of the current LWP identifiers for all of the threads in the
process. While transient threads (those whose lives are shorter than
the periodicity of the asynchronous thread) may be missed, this is
a worthwhile trade-off. Even after the thread is created, it may not
yet be restricted/assigned to a socket, core, or HWT, so ZeroSum
still has to periodically query the affinity list of the thread to con-
firm that it has not changed. In addition to confirming the affinity
of the LWPs in the process, ZeroSum will also capture the LWP
states. This data includes how much time (in the last query period)
was spent in user space execution, how much time was spent in
system calls, how much time the thread was idle, the current state
of the thread (running, idle, blocked, etc.), and how many context
switches have occurred, whether voluntary or non-voluntary.

3.1.2 OpenMP Threads. Typically, OpenMP runtimes will launch
a team of threads that by default is the same size as the number
of threads assigned to the process. For example, if a process is as-
signed to a range of cores with the Linux taskset --cpu-list
0-7 <executable> command, a team launched in a parallel region
with default settings will contain eight total threads. For OpenMP
runtimes prior to the 5.1 standard [32], ZeroSum will launch a par-
allel region with the #pragma omp parallel pragma, and get the
thread indices and LWP identifiers for the threads in the team of
threads (that typically live for the duration of the application, or
until the OpenMP runtime is exited). However, this technique is
not reliable for all runtimes or all situations, for example when
the #pragma omp teams num_teams(N) pragma is used in the
application. A more reliable method that ZeroSum also supports
is to use the OpenMP Tools (OMPT) support in modern runtimes
(OpenMP standard version 5.1 compliant or newer) to request that
the runtime notify the tool with a registered callback when an
OpenMP thread is created. ZeroSum has a minimal integration with

0 100 200 300 400 500

0

100

200

300

400

500

Recv

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

By
te

s

1e10

Figure 5: MPI point-to-point heatmap data of a gyroki-
netic particle-in-cell code [16] launched with 512 ranks run-
ning on Frontier, showing a strong nearest-neighbor pattern
along the central diagonal.

OMPT that includes support for this callback when provided by
the OpenMP runtime. Using the callback, ZeroSum can identify
the underlying POSIX thread as supporting an OpenMP thread.
Because OMPT integration requires a 5.1 or newer compliant run-
time, the first method described is provided for runtimes such as
the one provided by GNU and support is automatically detected at
configuration time.

3.1.3 MPI. As mentioned, during startup the hostname and MPI
communicator rank and size are captured by the asynchronous
thread, after it detects that MPI has been initialized through the
MPI_Initialized() call. ZeroSum also wraps the MPI point-to-
point API calls to capture the total bytes transferred and the rank
of the sender and receiver. This data helps give the user a high level
understanding of which MPI ranks are communicating the most
frequently with each other. This data can be post-processed to gen-
erate communication heatmaps like the one shown in Figure 5. This
data could also be used to guide the logical MPI process ordering on
the nodes to exploit lower latency communication between ranks
executing on the same node.

3.2 Configuration Evaluation
ZeroSum does not yet have any capability to detect and report a
misconfiguration. As mentioned earlier, a diagnosis would require
an evaluation of the existing configuration as well as a comparison
to a known “good” configuration for this platform. The authors see
this as a useful yet potentially time-consuming process of deter-
mining good configurations on specific platforms of note. However,
there are some easy benefits available in automatically detecting
when one or more LWPs are assigned to the same set of HWTs, and
there is a detectable contention between them. Because ZeroSum is
in an early prototype stage, this capability has not yet been added.

HUST-23, November 12, 2023, Denver, USA Huck and Malony

3.3 Progress Detection
At a very basic level, ZeroSum has the ability to periodically write
data to stdout indicating that at a minimum, the application is
viable. While this is the extent of the current functionality in Ze-
roSum to provide a positive “heartbeat” to the user, we observe
other opportunities for reporting progress or detecting deadlock.
Provided the asynchronous periodic thread has not been blocked,
ZeroSum should be able to evaluate the status data available for
each thread. For example, the LWP and HWT idle/user/system
counters are still available, as is the current state of the LWP. There
is also an opportunity to examine the current instruction pointer
for each thread, and between all of those inputs, detect a deadlock
condition and possibly terminate the application to prevent wasting
of allocation resources. We see this as an interesting future research
opportunity. In addition, ZeroSum could potentially be integrated
with data services, providing a continuous stream of data reporting
the current state of the application.

3.4 Utilization Report
At the end of execution, a utilization report is generated. Rank 0
will write a summary report to stdout, while all ranks will write a
detailed report to their log files. First, the duration of the execution is
reported, along with basic information about the process including
the MPI rank, the process ID, the hostname of the node, and the
process affinity list. Then a list of all LWP detected during execution
is reported as a table. The table includes the LWP ID, the thread type
(Main, ZeroSum, OpenMP, other), the percentage of time spent in
system calls, the percentage of time spent in user code, the number
of non-voluntary context switches, the number of voluntary context
switches, and the affinity list of HWT indexes that the thread was
assigned. It should be noted that some threads, like MPI or GPU
progress/helper threads are not restricted to any set of cores (and are
typically not bound by job schedulers). The LWP system percentage
added to the user percentage should add up to 100%, indicating that
the LWP was not sitting idle. Whether that time was “useful” is
beyond our scope, as code efficiency is better measured by existing
detailed performance tools looking at hardware counters. Listing 2
shows example output from an MPI execution of miniQMC [18, 37]
with 8 processes, 4 OpenMP threads per process and GPU target
offload. The number of threads controls the number of walkers in
the algorithm, each of which executes target offload calls to a single
AMD MI250X GCD, or one half of the full GPU.

After the LWP report, the HWT report is listed. The HWT report
is limited to the HWTs that are part of the affinity list of the process,
although some threads, like the MPI progress thread, are not bound
to any affinity list. The HWT report includes the index, the percent-
age of time that the HWTwas idle, the percentage of time the HWT
spent in system calls, and the percentage of time the HWT spent
executing user code. Other metrics (nice, idle, iowait, etc.) are also
available but not currently captured. The output in Listing 2 shows
that half of the cores were idle, and those that were executing spent
a notable amount of time in system calls, likely as part of the target
offload data transfers, kernel launch, and synchronization process.
The idle time is likely due to synchronization waiting on the GPU
to complete the requests.

In addition to the CPU utilization data, the GPU utilization is
also shown. The “visible” HIP index (0) of the GCD/GPU is shown,
even though the true GCD/GPU index (4) may be different. The
data shown in Listing 2 is collected using the ROCm SMI API [4].
For other architectures (CUDA, SYCL), ZeroSum is integrated with
the NVIDIA NVML library [29] and Intel DPC++/SYCL API [12] to
query similar statistics. In the summary view the minimum, mean,
and maximum observed values are shown.

3.5 Contention Report
The data reported in the Utilization Report is useful in understand-
ing the amount of contention that a LWP experienced during exe-
cution. One obvious metric is that the the non-voluntary context
switches measure how frequently the operating system had to in-
terrupt the LWP in order to provide time-sliced access to the HWT
that the LWP is running on. The percentage of time spent in system
calls can intuitively give the user some indication of how much
contention the thread experienced, as system calls are used by the
application to utilize limited system resources such as network, I/O,
semaphores and mutexes. Comparing the affinity list for a given
LWP with the other LWPs in the process can indicate whether
there was any overlap in resource assignments – which will usually
introduce non-voluntary context switches to the LWP report due
to the over-subscription of the HWT/core.

In addition to thread contention, there are other finite resources
to monitor. One such resource is memory usage, both the overall
system memory as well as the GPU memory (if present). For the
system memory, ZeroSum monitors the /proc/meminfo [22] file as
well as the /proc/[self|pid]/status [22] file to check both how
much total system memory is available as well as how much each
process is using. This helps to capture whether an out-of-memory
error (OOM) has happened due to the application processes them-
selves or due to another system process that is consuming large
amounts of memory. On the GPU, ZeroSum will use the vendor li-
braries listed in Section 3.4 to periodically check howmuchmemory
is used and free on the GPU resources.

3.6 Exportation of Data
Each process monitored by ZeroSum will write a log file containing
the same summary that was written by the root process to stdout.
In addition to the high level summary, a detailed dump of all data
collected by ZeroSum is also written to the log as comma separated
values, allowing for time-series analysis of the periodic data. The
LWP CSV values include additional data such as the current state
of the thread (running, sleeping, waiting, etc.), minor page faults,
major page faults, the number of pages swapped, and the CPU
number that the LWPwas last executed on. The log file also contains
the MPI point-to-point data collected between all ranks, which can
be post-processed to produce a heatmap like the one shown in
Figure 5.

4 EXPERIMENTAL EVALUATION
To date, ZeroSum has been tested on the Oak Ridge National Labo-
ratory machines Summit [31] and Frontier [30], as well as the the
NERSC machine Perlmutter [27] and an internal test system with
an Intel Xe GPU accelerator at (hidden for anonymous submission).

ZeroSum: User Space Monitoring of Resource Utilization and Contention on Heterogeneous HPC Systems HUST-23, November 12, 2023, Denver, USA

Listing 2: Sample output from miniQMC (the OpenMP target offload implementation) executed on Frontier, using the
OpenMP environment variables OMP_PROC_BIND=spread, OMP_PLACES=cores, OMP_NUM_THREADS=4, and launched with srun -n8
--gpus-per-task=1 --cpus-per-task=7 --gpu-bind=closest. The first core from each NUMA domain was reserved for system
processes, and only one HWT per thread was enabled using the #SBATCH --threads-per-core=1 argument to the job script.
Dura t ion o f e x e cu t i on : 2 1 0 . 8 7 8 s

P r o c e s s Summary :
MPI 000 − PID 51334 − Node f r o n t i e r 0 9 0 8 5 − CPUs a l l owed : [1 , 2 , 3 , 4 , 5 , 6 , 7]

LWP (th r e ad) Summary :
LWP 51 3 3 4 : Main , OpenMP − s t ime : 1 2 . 4 8 , ut ime : 6 3 . 9 4 , nv_c tx : 4 , c t x : 3 65488 , CPUs : [1]
LWP 51 3 4 3 : ZeroSum − s t ime : 0 . 1 5 , ut ime : 0 . 2 6 , nv_c tx : 9 , c t x : 6 79 , CPUs : [7]
LWP 51 3 7 4 : Other − s t ime : 0 . 0 0 , ut ime : 0 . 0 0 , nv_c tx : 0 , c t x : 6 , CPUs :

[1 −7 ,9 −15 ,17 −23 ,25 −31 ,33 −39 ,41 −47 ,49 −55 ,57 −63 ,65 −71 ,73 −79 ,81 −87 ,89 −95 ,97 −103 ,
105 −111 ,113 −119 ,121 −127]

LWP 51 3 8 4 : OpenMP − s t ime : 1 2 . 6 0 , ut ime : 6 4 . 0 0 , nv_c tx : 3 , c t x : 3 65742 , CPUs : [3]
LWP 51 3 8 5 : OpenMP − s t ime : 1 2 . 6 3 , ut ime : 6 4 . 2 7 , nv_c tx : 2 , c t x : 3 52574 , CPUs : [5]
LWP 51 3 8 6 : OpenMP − s t ime : 1 2 . 7 4 , ut ime : 6 3 . 7 6 , nv_c tx : 4 73 , c t x : 3 68585 , CPUs : [7]

Hardware Summary :
CPU 001 − i d l e : 2 2 . 7 0 , system : 1 2 . 4 2 , u s e r : 6 4 . 5 2
CPU 002 − i d l e : 9 9 . 8 2 , system : 0 . 0 0 , u s e r : 0 . 0 0
CPU 003 − i d l e : 2 3 . 0 8 , system : 1 2 . 6 0 , u s e r : 6 3 . 9 7
CPU 004 − i d l e : 9 9 . 8 3 , system : 0 . 0 0 , u s e r : 0 . 0 0
CPU 005 − i d l e : 2 2 . 7 9 , system : 1 2 . 6 2 , u s e r : 6 4 . 2 3
CPU 006 − i d l e : 9 9 . 8 3 , system : 0 . 0 0 , u s e r : 0 . 0 0
CPU 007 − i d l e : 2 2 . 9 4 , system : 1 2 . 8 9 , u s e r : 6 3 . 8 1

GPU 0 − (me t r i c : min avg max)
Clock Frequency , GLX (MHz) : 8 0 0 . 0 0 0 0 0 0 1 6 1 4 . 6 9 1 9 4 3 1 7 0 0 . 0 0 0 0 0 0
Clock Frequency , SOC (MHz) : 1 0 9 0 . 0 0 0 0 0 0 1 0 9 0 . 0 0 0 0 0 0 1 0 9 0 . 0 0 0 0 0 0
Device Busy %: 0 . 0 0 0 0 0 0 1 4 . 6 1 6 1 1 4 5 2 . 0 0 0 0 0 0
Energy Average (J) : 0 . 0 0 0 0 0 0 8 . 3 2 8 5 7 1 1 0 . 0 0 0 0 0 0
GFX A c t i v i t y : 0 . 0 0 0 0 0 0 1 7 2 2 3 . 7 0 4 7 6 2 3 8 4 4 3 . 0 0 0 0 0 0
GFX A c t i v i t y %: 0 . 0 0 0 0 0 0 1 3 . 7 0 6 1 6 1 4 1 . 0 0 0 0 0 0
Memory A c t i v i t y : 0 . 0 0 0 0 0 0 6 2 3 . 6 2 3 8 1 0 1 5 3 6 . 0 0 0 0 0 0
Memory Busy %: 0 . 0 0 0 0 0 0 0 . 3 5 5 4 5 0 3 . 0 0 0 0 0 0
Memory Con t r o l l e r A c t i v i t y : 0 . 0 0 0 0 0 0 0 . 3 0 3 3 1 8 2 . 0 0 0 0 0 0
Power Average (W) : 9 0 . 0 0 0 0 0 0 1 2 6 . 4 8 3 4 1 2 1 3 8 . 0 0 0 0 0 0
Temperature (C) : 3 5 . 0 0 0 0 0 0 3 7 . 9 0 9 9 5 3 3 9 . 0 0 0 0 0 0
UVD |VCN A c t i v i t y : 0 . 0 0 0 0 0 0 0 . 0 0 0 0 0 0 0 . 0 0 0 0 0 0
Used GTT Bytes : 1 1 6 2 4 4 4 8 . 0 0 0 0 0 0 1 1 6 2 4 4 4 8 . 0 0 0 0 0 0 1 1 6 2 4 4 4 8 . 0 0 0 0 0 0
Used VRAM Bytes : 1 5 0 4 4 6 0 8 . 0 0 0 0 0 0 4 7 4 3 3 4 6 6 5 1 . 6 0 1 8 9 5 4 8 3 9 5 9 6 0 3 2 . 0 0 0 0 0 0
Used V i s i b l e VRAM Bytes : 1 5 0 4 4 6 0 8 . 0 0 0 0 0 0 4 7 4 3 3 4 6 8 8 4 . 5 4 9 7 6 3 4 8 3 9 5 9 6 0 3 2 . 0 0 0 0 0 0
Vo l t age (mV) : 8 0 6 . 0 0 0 0 0 0 8 9 1 . 8 4 8 3 4 1 9 0 6 . 0 0 0 0 0 0

This collection of machines covers several CPU and GPU architec-
tures, as well as different job schedulers. For all of the platforms, if
hwloc is available configuration and building of the tool requires
that PKG_CONFIG_PATH has been set to the path for hwloc.

For brevity, we focus on results from the Frontier system. Fron-
tier is a HPE Cray EX supercomputer located at the Oak Ridge
Leadership Computing Facility. The system has 74 Olympus rack
HPE cabinets, each with 128 AMD compute nodes, for a total of
9,408 AMD compute nodes. Each compute node consists of one

HUST-23, November 12, 2023, Denver, USA Huck and Malony

LWP Type stime utime nvctx ctx CPUs
18351 Main† 1.54 15.17 332905 1838 1
18356 ZeroSum 0.42 1.10 194 1007 1
18385 Other 0.00 0.00 0 41 1-127‡
18405 OpenMP 0.31 13.09 232689 5 1
18407 OpenMP 0.44 12.93 353365 11 1
18408 OpenMP 0.21 13.22 92528 3 1
18409 OpenMP 0.47 12.93 394014 10 1
18410 OpenMP 0.37 13.03 302371 7 1
18411 OpenMP 0.41 12.97 348829 10 1

Table 1: Frontier results, default configuration. †indicates
that the main thread is also an OpenMP thread. ‡indicates
that the first core of each L3 region was set aside for system
processes, not all threads in the sequence 1-127 are allowed
but summarized for brevity in the table (see LWP 51274 in
Listing 2).

64-core AMD “Optimized 3rd Gen EPYC” CPU, 2 hardware threads
per physical core, and access to 512 GB of DDR4 memory. Each
node also contains four AMD MI250X, each with two Graphics
Compute Dies (GCDs) for a total of eight GCDs per node.

Building ZeroSum on Frontier is fairly straightforward, using
CMake to configure and build the source code. Library dependencies
like HIP/ROCm and hwloc are optional, so if they are not found
the tool will still configure and build.

To demonstrate ZeroSum, we compile and run the ECP Proxy
Application miniQMC [37]. miniQMC contains a simplified but
computationally accurate implementation of the real space quan-
tum Monte Carlo algorithms implemented in the full production
QMCPACK application.

In the following examples, the CPU-only MPI+OpenMP imple-
mentation of miniQMC was compiled with the AMD 5.2.0 compiler
using the Cray MPI wrappers and the AMD OpenMP runtime. The
problem size executed was [2, 2, 2]. As a simple test, the application
was executed with eight MPI ranks, and seven OpenMP threads
per process, set with OMP_NUM_THREADS=7. The application was
launched with the default settings of srun and minimal arguments.
The default configuration on Frontier is to reserve the first core of
each NUMA domain for system processes. The complete command
line was srun -n8 zerosum-mpi miniqmc. ZeroSum was config-
ured to collect samples at a frequency of once per second. Some
of the summarized output from ZeroSum is shown in Table 1. The
table shows that the default behavior is to only allow 1 core per
MPI process, and all of the threads were bound to the first available
core, core 1. The lone exception is the MPI helper thread, which
is not bound to any cores – not even the subset assigned to the
process. Stime and utime are the average time spent in system
and user time, measured in jiffies. The nvctx column shows the
total number of non-voluntary context switches experienced by
each thread, and clearly there are a very large number of context
switches as the OS is time-slicing the core to share across the 9
total threads. The application reported execution time was 63.67
seconds.

In contrast, the data shown in Table 2 shows what happens when
the slurm command is changed to srun -n8 -c7 zerosum-mpi

LWP Type stime utime nvctx ctx CPUs
18552 Main† 3.13 88.40 5 704 1-7
18561 ZeroSum 0.79 2.64 2 2790 7
18588 Other 0.00 0.00 0 41 1-127‡
18589 OpenMP 1.10 90.00 9 716 1-7
18590 OpenMP 1.10 93.00 8 724 1-7
18591 OpenMP 1.07 90.52 9 692 1-7
18592 OpenMP 1.10 89.83 14 766 1-7
18593 OpenMP 1.10 90.48 7 728 1-7
18594 OpenMP 1.10 91.93 300 849 1-7

Table 2: Frontier results, configuration requesting 7 cores
per process. †indicates that the main thread is also an
OpenMP thread. ‡indicates that the first core of each L3 re-
gion was set aside for system processes, not all threads in
the sequence 1-127 are allowed but summarized for brevity
in the table (see LWP 51274 in Listing 2).

miniqmc. In this case, the OpenMP threads are not bound to specific
cores, but the OS will schedule them on a core and they typically
will not need to bemigrated during the short execution of this proxy.
In this example execution, the OpenMP threads were all migrated
at least once during execution, as captured by ZeroSum record-
ing the core on which the thread last executed at each periodic
measurement (not shown). The contention for time on each core is
reduced significantly for all application threads. One thread that still
has some measurable contention is the last OpenMP thread which
shares a core with the ZeroSum thread that is periodically observing
the system. The core/thread where the ZeroSum thread executes
is runtime configurable with an option passed to the zerosum-mpi
wrapper script. The application reported execution time was re-
duced to 27.33 seconds. While this is a simple and obvious change to
using the node resources correctly, it helps demonstrate the ability
of ZeroSum to identify poor thread-core mappings with minimal
effort.

Finally, the data shown in Table 3 shows what happens when
the slurm command is changed to srun -n8 -c7 zerosum-mpi
miniqmc and the OpenMP OMP_PROC_BIND and OMP_PLACES envi-
ronment variables are set to spread and cores, respectively. In
this case, the OpenMP threads are bound to specific cores. The con-
tention for time on each core is reduced further (threads are never
migrated), and the voluntary context switches are also reduced.
While the runtime for this example is similar to the second case
(27.40 seconds), for a larger, longer running application this config-
uration could be preferable and therefore would show a measurable
performance difference.

Figures 6 and 7 show a time series stacked line chart of the idle,
system, and user times recorded by ZeroSum for the LWP and HWT,
respectively, for the third example described above. These charts
demonstrate the potential for producing time series charts of all
the data captured by ZeroSum, including major and minor page
faults, the number of pages swapped, voluntary and non-voluntary
context switches, the processor a LWP ran on, and the state of the
LWP. It should be noted that Figure 6 is rather noisy, reflecting
the fact that /proc/[self|pid]/stat [22] data is not accurate
enough for detailed performance measurement but is accurate in

ZeroSum: User Space Monitoring of Resource Utilization and Contention on Heterogeneous HPC Systems HUST-23, November 12, 2023, Denver, USA

LWP Type stime utime nvctx ctx CPUs
18948 Main† 3.07 88.57 2 386 1
18954 ZeroSum 0.71 2.57 2 291 7
18981 Other 0.00 0.00 0 41 1-127‡
18992 OpenMP 1.18 96.36 0 422 2
18993 OpenMP 1.14 96.50 1 391 3
18994 OpenMP 1.18 96.46 0 381 4
18995 OpenMP 1.11 93.89 0 324 5
18996 OpenMP 1.14 93.29 0 370 6
18997 OpenMP 1.14 95.54 208 358 7

Table 3: Frontier results, configuration requesting 7
cores per process and binding OpenMP threads to cores.
†indicates that the main thread is also an OpenMP thread.
‡indicates that the first core of each L3 region was set aside
for system processes, not all threads in the sequence 1-127
are allowed but summarized for brevity in the table (see
LWP 51274 in Listing 2).

Figure 6: miniQMC LWP (threads) over time. The noisiness
demonstrates the lack of precision when using the virtual
filesystem to observe utilization data.

Figure 7: CPU Core utilization over time.

the aggregate and sufficient to meet the motivations outlined in
Section 2.

27.1

27.15

27.2

27.25

27.3

27.35

27.4

27.45

27.5

Runtime distribution in seconds,
one thread per core

default with zerosum

56.7
56.8
56.9

57
57.1
57.2
57.3
57.4
57.5
57.6

Runtime distribution in seconds,
two threads per core

default with zerosum

Figure 8: miniQMC time distributions executed 10 times
using one OpenMP thread per core (left). In this compari-
son, the distribution of times with ZeroSum is noisier, but
there is no significant observation of measurable overhead.
The right figure shows the time distributions using two
OpenMP threads per core. In this comparison, the distribu-
tion of times with ZeroSum is both noisier and longer tailed,
and does show an observation of overhead, averaging about
0.2752 seconds, or 0.5%.

4.1 ZeroSum Overhead
To measure the overhead of ZeroSum, we executed the same MPI+
OpenMP implementation of miniQMC with the best running slurm
configuration (reported earlier) ten times with andwithout ZeroSum
in the same allocation on Frontier. We also repeated the experiment
using two threads per core, or 14 total OpenMP threads (reserving
the first core of each L3 region for system processes as is the rec-
ommended and default configuration). As with other experiments,
ZeroSum was configured to collect samples at a frequency of once
per second. For the first comparison shown in Figure 8, we observe
no statistically significant difference between the baseline and with
ZeroSum when comparing the application self-reported runtime.
The average runtime was 27.3396 ± 0.0358 seconds in the baseline
case, compared to 27.3395±0.1043 seconds with ZeroSum. The t-test
score comparing the two distributions is 0.998, suggesting a high
probability they were drawn from the same distribution. However,
the second scenario with two threads per core did show a slight
increase in runtime.The baseline case had an observed runtime of
57.0657 ± 0.0486 seconds and the ZeroSum case had an observed
runtime of 57.3409 ± 0.1823 seconds, with a t-test score of 0.0006
suggesting it is very unlikely these two sets were drawn from the
same distribution. However, the observed overhead in this scenario
was an average of 0.2752 ± 0.1891 seconds, or less than 0.5%. We
suspect the difference between these two cases suggests that when
a core is already fully occupied with two busy OpenMP threads,
the introduction of the ZeroSum thread activity even at 1 second
intervals was enough to slightly perturb the overall runtime.

5 RELATEDWORK
Much of the work related to ZeroSum has already been discussed in
Section 2. Command line utilities such as Linux top and htop [21,
23] (shown in Figure 4) and ps, and graphical interfaces such as
MenuMeters [17], macOS Activity Monitor [5], Windows Resource
Monitor [25] and others are all examples of single-node methods

HUST-23, November 12, 2023, Denver, USA Huck and Malony

for observing system utilization and contention. ZeroSum is access-
ing similar user-space interfaces to the reported system data, but
aggregating it over all of the nodes in an HPC allocation.

Most system monitoring tools in the HPC and Cloud communi-
ties are designed for use by system administrators and that data is
rarely shared with users. Examples include LDMS [2], Ganglia [24],
Puppet Console [36]. and Jobstats [33]. These approaches all require
pre-installed databases, services, and/or daemons to collect, aggre-
gate and analyze the data from all jobs scheduled on the system.
Another administrator-focused project is TACC Stats [13]. Due to
the volume of data coming from every node in a cluster, the default
data collection periodicity of TACC Stats is 10minutes (scheduled as
a cronjob), compared to the 1 second default of ZeroSum, although
they are both configurable. While TACC Stats collects hardware
counters and data at the core level, they do not track thread utiliza-
tion or contention data from each process. Unlike ZeroSum, data
does not appear to be immediately available but is aggregated every
24 hours to a central repository for analysis.

Linux system tracing tools such as strace, ptrace, dtrace,
dtruss, ftrace, KUtrace, kprobe, system-tap, eBPF, bpftrace
monitor what the operating system, kernel and hardware are doing
in response to system calls. As mentioned in Section 2, these tools
require root level access, kernel modifications/patches, or additional
processes to monitor the system calls of a given application. They
also perform very detailed tracing of system calls, potentially intro-
ducing significant overhead and generating volumes of data. These
tools are not appropriate for user-space monitoring of distributed
HPC applications.

Specialized monitoring of subsystems such as Darshan [11] for
filesystem I/O provide a window into how well the system is re-
sponding to application needs, and while it provides users access
to their utilization data for analysis and visualization, the measure-
ment is limited to filesystem performance.

Several application performance libraries and tools provide ac-
cess to some monitoring data. PAPI [41] has many components
that are designed to observe system resources such as network,
filesystem and hardware counters, and performance measurement
tools like Score-P [20], Caliper [7], HPCToolkit [1], and TAU [40]
utilize PAPI for measurement, but these tools are better suited to
targeted application performance analysis scenarios, not user-space
monitoring of system utilization.

6 CONCLUSION AND FUTUREWORK
The ZeroSum research prototype described in this paper was moti-
vated by a gap that we believe exists in present HPC performance
tools between application-oriented and system-oriented environ-
ments and the solutions available to address optimization problems
of interest to the user. In particular, when considering the configura-
tion optimization problem, observing application performance data
or system performance data alone is insufficient. Rather, it is neces-
sary to monitor both in order to have a joint context for identifying
the complex placement, utilization, and contention performance
issues that occur at the application-system boundary.

We developed ZeroSum to capture significant information of
interest to how the application is scheduled, assigned resources,
and executes – information that is available at the system level, but

from different sources and about heterogeneous devices that are not
commonly integrated in application performance tools. ZeroSum is
doing the difficult work of tapping into these sources, consolidating
the data, analyzing configurability issues, and producing results. It
is intended to function as a window on system operation that is
integrated with the application and is knowledgeable of the HPC
configuration environment.

There are several future directions that are worthwhile to pursue.
Our choice of what to include in ZeroSum was directed by potential
use cases and the system utilities reasonably available to us. As
the systems and hardware evolve, it well may be that other data is
important to capture for addressing configurability optimization
concerns. We will err on the side of utility, only collecting data for
which there is an analysis requirement.

Leveraging ZeroSum as a “use once when porting an application
to a new system or job scheduler” is certainly a motivating use
case in our opinion. However, for the purposes of fully integrated
user-space monitoring, ZeroSum could be extended in several ways.
Better connecting to ZeroSum during execution is a common inter-
est that can serve multiple purposes. For instance, we can imagine
ZeroSum being utilized to feed application-oriented information
to system-oriented services such as LDMS. Going the other way,
interfaces to ZeroSum could make its data accessible to application
performance tools like TAU. Caliper [8] or PerfStubs [9] would be a
good candidate for this purpose. The goal of adapting an application
during execution will require even more support for collecting Zero-
Sum data from across the application processes. More sophisticated
monitoring infrastructure, such as based on distributed services
like Mochi [38], could be pursued. ZeroSum could be integrated into
runtime systems like Argobots [39] to help guide runtime control
decisions. Finally, the log output from ZeroSum should be refactored
to utilize the time-series I/O staging library ADIOS2 [15].

ACKNOWLEDGMENTS
This work was supported by the Scientific Discovery through Ad-
vanced Computing (SciDAC) program funded by U.S. Department
of Energy, Office of Science, Advanced Scientific Computing Re-
search (ASCR) under contract DE-SC0021299. This research was
also supported by the Exascale Computing Project (17-SC-20-SC),
a collaborative effort of the U.S. Department of Energy Office of
Science and the National Nuclear Security Administration. This
research used resources of the Oak Ridge Leadership Computing
Facility at the Oak Ridge National Laboratory, which is supported
by the Office of Science of the U.S. Department of Energy under
Contract No. DE-AC05-00OR22725.

REFERENCES
[1] L. Adhianto, S. Banerjee, M. Fagan, M. Krentel, G. Marin, J. Mellor-Crummey, and

N. R. Tallent. 2010. HPCTOOLKIT: tools for performance analysis of optimized
parallel programs http://hpctoolkit.org. Concurr. Comput. : Pract. Exper. 22 (April
2010), 685–701. Issue 6. https://doi.org/10.1002/cpe.v22:6

[2] Anthony Agelastos, Benjamin Allan, Jim Brandt, Paul Cassella, Jeremy Enos, Joshi
Fullop, Ann Gentile, Steve Monk, Nichamon Naksinehaboon, Jeff Ogden, Mahesh
Rajan, Michael Showerman, Joel Stevenson, Narate Taerat, and Tom Tucker.
2014. The Lightweight Distributed Metric Service: A Scalable Infrastructure for
Continuous Monitoring of Large Scale Computing Systems and Applications. In
SC ’14: Proceedings of the International Conference for High Performance Computing,
Networking, Storage and Analysis. 154–165. https://doi.org/10.1109/SC.2014.18

[3] Dong H. Ahn, Ned Bass, Albert Chu, Jim Garlick, Mark Grondona, Stephen
Herbein, Helgi I. Ingólfsson, JosephKoning, Tapasya Patki, Thomas R.W. Scogland,

https://doi.org/10.1002/cpe.v22:6
https://doi.org/10.1109/SC.2014.18

ZeroSum: User Space Monitoring of Resource Utilization and Contention on Heterogeneous HPC Systems HUST-23, November 12, 2023, Denver, USA

Becky Springmeyer, and Michela Taufer. 2020. Flux: Overcoming scheduling
challenges for exascale workflows. Future Generation Computer Systems 110
(2020), 202–213. https://doi.org/10.1016/j.future.2020.04.006

[4] AMD. 2022. ROCm System Management Interface. https://github.com/
RadeonOpenCompute/rocm_smi_lib

[5] Inc. Apple. 2023. Activity Monitor User Guide. online. https://support.apple.
com/guide/activity-monitor/welcome/mac

[6] Abhinav Bhatele, KathrynMohror, StevenH. Langer, and Katherine E. Isaacs. 2013.
There Goes the Neighborhood: Performance Degradation Due to Nearby Jobs.
In Proceedings of the International Conference on High Performance Computing,
Networking, Storage and Analysis (Denver, Colorado) (SC ’13). Association for
Computing Machinery, New York, NY, USA, Article 41, 12 pages. https://doi.
org/10.1145/2503210.2503247

[7] David Boehme, Todd Gamblin, David Beckingsale, Peer-Timo Bremer, Alfredo
Gimenez, Matthew LeGendre, Olga Pearce, and Martin Schulz. 2016. Caliper:
performance introspection for HPC software stacks. In SC’16: Proceedings of the
International Conference for High Performance Computing, Networking, Storage
and Analysis. IEEE, 550–560.

[8] David Boehme, Todd Gamblin, David Beckingsale, Peer-Timo Bremer, Alfredo
Gimenez, Matthew LeGendre, Olga Pearce, and Martin Schulz. 2016. Caliper:
Performance Introspection for HPC Software Stacks. In Proceedings of the Inter-
national Conference for High Performance Computing, Networking, Storage and
Analysis (Salt Lake City, Utah) (SC ’16). IEEE Press, Article 47, 11 pages.

[9] David Boehme, Kevin Huck, Jonathan Madsen, and Josef Weidendorfer. 2019. The
Case for a Common Instrumentation Interface for HPC Codes. In 2019 IEEE/ACM
International Workshop on Programming and Performance Visualization Tools
(ProTools). 33–39. https://doi.org/10.1109/ProTools49597.2019.00010

[10] François Broquedis, Jérôme Clet-Ortega, Stéphanie Moreaud, Nathalie Furmento,
Brice Goglin, Guillaume Mercier, Samuel Thibault, and Raymond Namyst. 2010.
hwloc: a Generic Framework for Managing Hardware Affinities in HPC Ap-
plications. In PDP 2010 - The 18th Euromicro International Conference on Par-
allel, Distributed and Network-Based Computing, IEEE (Ed.). Inria.fr, Pisa, Italy.
https://doi.org/10.1109/PDP.2010.67

[11] P. Carns, R. Latham, R. Ross, K. Iskra, S. Lang, and K. Riley. 2009. 24/7 Char-
acterization of petascale I/O workloads. In 2009 IEEE International Conference
on Cluster Computing and Workshops (CLUSTER). IEEE Computer Society, Los
Alamitos, CA, USA, 1–10. https://doi.org/10.1109/CLUSTR.2009.5289150

[12] Intel Corporation. 2023. Data Parallel C++: the oneAPI Implementation of
SYCL*. https://www.intel.com/content/www/us/en/developer/tools/oneapi/data-
parallel-c-plus-plus.html#gs.3mmagp

[13] Todd Evans, William L. Barth, James C. Browne, Robert L. DeLeon, Thomas R.
Furlani, Steven M. Gallo, Matthew D. Jones, and Abani K. Patra. 2014. Com-
prehensive Resource Use Monitoring for HPC Systems with TACC Stats. In
2014 First International Workshop on HPC User Support Tools. 13–21. https:
//doi.org/10.1109/HUST.2014.7

[14] Hanhua Feng, Vishal Misra, and Dan Rubenstein. 2007. PBS: A Unified Priority-
Based Scheduler. SIGMETRICS Perform. Eval. Rev. 35, 1 (jun 2007), 203–214.
https://doi.org/10.1145/1269899.1254906

[15] William F Godoy, Norbert Podhorszki, Ruonan Wang, Chuck Atkins, Greg Eisen-
hauer, Junmin Gu, Philip Davis, Jong Choi, Kai Germaschewski, Kevin Huck,
et al. 2020. ADIOS 2: The adaptable input output system. a framework for
high-performance data management. SoftwareX 12 (2020), 100561.

[16] Robert Hager, E.S. Yoon, S. Ku, E.F. D’Azevedo, P.H. Worley, and C.S. Chang.
2016. A fully non-linear multi-species Fokker–Planck–Landau collision operator
for simulation of fusion plasma. J. Comput. Phys. 315 (2016), 644–660. https:
//doi.org/10.1016/j.jcp.2016.03.064

[17] Alex Harper. 2023. MenuMeters. online. https://ragingmenace.com/software/
menumeters/

[18] Jeongnim Kim, Andrew D Baczewski, Todd D Beaudet, Anouar Benali, M Chan-
dler Bennett, Mark A Berrill, Nick S Blunt, Edgar Josué Landinez Borda, Michele
Casula, David M Ceperley, Simone Chiesa, Bryan K Clark, Raymond C Clay,
Kris T Delaney, Mark Dewing, Kenneth P Esler, Hongxia Hao, Olle Heinonen,
Paul R C Kent, Jaron T Krogel, Ilkka Kylänpää, Ying Wai Li, M Graham Lopez, Ye
Luo, Fionn D Malone, Richard M Martin, Amrita Mathuriya, Jeremy McMinis,
Cody A Melton, Lubos Mitas, Miguel A Morales, Eric Neuscamman, William D
Parker, Sergio D Pineda Flores, Nichols A Romero, Brenda M Rubenstein, Jacque-
line A R Shea, Hyeondeok Shin, Luke Shulenburger, Andreas F Tillack, Joshua P
Townsend, NormM Tubman, Brett Van Der Goetz, Jordan E Vincent, D ChangMo
Yang, Yubo Yang, Shuai Zhang, and Luning Zhao. 2018. QMCPACK: an open
source ab initio quantum Monte Carlo package for the electronic structure of
atoms, molecules and solids. Journal of Physics: Condensed Matter 30, 19 (apr
2018), 195901. https://doi.org/10.1088/1361-648X/aab9c3

[19] Dalibor Klusáček, Václav Chlumský, and Hana Rudová. 2015. Planning and Opti-
mization in TORQUE Resource Manager. In Proceedings of the 24th International
Symposium on High-Performance Parallel and Distributed Computing (Portland,
Oregon, USA) (HPDC ’15). Association for Computing Machinery, New York, NY,
USA, 203–206. https://doi.org/10.1145/2749246.2749266

[20] Andreas Knüpfer, Christian Rössel, Scott Biersdorff, Kai Diethelm, Dominic
Eschweiler, Markus Geimer, Michael Gerndt, Daniel Lorenz, Allen Malony, Wolf-
gang E Nagel, et al. 2012. Score-p: A joint performance measurement run-time
infrastructure for periscope, scalasca, tau, and vampir. In Tools for High Perfor-
mance Computing 2011. Springer, 79–91.

[21] Linux man pages. 2023. htop(1) — Linux manual page. online. https://man7.org/
linux/man-pages/man1/htop.1.html

[22] Linuxman pages. 2023. proc - process information, system information, and sysctl
pseudo-filesystem. online. https://man7.org/linux/man-pages/man5/proc.5.html

[23] Linux man pages. 2023. top(1) — Linux manual page. online. https://man7.org/
linux/man-pages/man1/top.1.html

[24] Matthew L Massie, Brent N Chun, and David E Culler. 2004. The ganglia dis-
tributed monitoring system: design, implementation, and experience. Parallel
Comput. 30, 7 (2004), 817–840. https://doi.org/10.1016/j.parco.2004.04.001

[25] Microsoft. 2023. Using Resource Monitor to Troubleshoot Windows Performance
Issues. online. https://techcommunity.microsoft.com/t5/ask-the-performance-
team/using-resource-monitor-to-troubleshoot-windows-performance/ba-
p/375008

[26] Servesh Muralidharan. 2023. An overview of Argonne’s Aurora
Exascale Supercomputer and its Programming Models. online.
https://extremecomputingtraining.anl.gov/wp-content/uploads/sites/96/
2022/11/ATPESC-2022-Track-1-Talk-9-Muralidharan-Aurora.pdf

[27] NERSC. 2023. Perlmutter Architecture. online. https://docs.nersc.gov/systems/
perlmutter/architecture/

[28] T. Newhouse and J. Pasquale. 2006. ALPS: An Application-Level Proportional-
Share Scheduler. In 2006 15th IEEE International Conference on High Performance
Distributed Computing. IEEE, Paris, France, 279–290. https://doi.org/10.1109/
HPDC.2006.1652159

[29] NVIDIA. 2020. NVIDIA Management Library (NVML). https://developer.nvidia.
com/nvidia-management-library-nvml.

[30] OLCF. 2023. Frontier User Guide. online. https://docs.olcf.ornl.gov/systems/
frontier_user_guide.html

[31] OLCF. 2023. Summit User Guide. online. https://docs.olcf.ornl.gov/systems/
summit_user_guide.html

[32] OpenMP. 2022. OpenMP Specifications. https://www.openmp.org/specifications/
[33] Josko Plazonic, Jonathan Halverson, and Troy Comi. 2023. Jobstats: A Slurm-

Compatible Job Monitoring Platform for CPU and GPU Clusters. In Practice and
Experience in Advanced Research Computing (Portland, OR, USA) (PEARC ’23).
Association for Computing Machinery, New York, NY, USA, 102–108. https:
//doi.org/10.1145/3569951.3604396

[34] Allan Porterfield, Rob Fowler, Anirban Mandal, David O’Brien, Stephen Olivier,
and Michael Spiegel. 2012. Adaptive scheduling using performance introspection.
Technical Report. TR-12-02. RENCI, 2012. https://renci.org/wp-content/uploads/
2012/07/TR-12-02.pdf

[35] The Open MPI Project. 2023. Portable Hardware Locality (hwloc). online. https:
//www.open-mpi.org/projects/hwloc/

[36] Puppet, Inc. a Perforce Company. 2023. Welcome to Puppet Enterprise 2023.2.
online. https://www.puppet.com/docs/pe/2023.2/pe_user_guide.html

[37] QMCPACK. 2023. QMCPACK miniapp: a simplified real space QMC code for
algorithm development, performance portability testing, and computer science
experiments. online. https://github.com/QMCPACK/miniqmc/tree/OMP_offload

[38] Robert B Ross, George Amvrosiadis, Philip Carns, Charles D Cranor, Matthieu
Dorier, Kevin Harms, Greg Ganger, Garth Gibson, Samuel K Gutierrez, Robert
Latham, et al. 2020. Mochi: Composing data services for high-performance
computing environments. Journal of Computer Science and Technology 35 (2020),
121–144.

[39] Sangmin Seo, Abdelhalim Amer, Pavan Balaji, Cyril Bordage, George Bosilca,
Alex Brooks, Philip Carns, Adrián Castelló, Damien Genet, Thomas Herault,
Shintaro Iwasaki, Prateek Jindal, Laxmikant V. Kalé, Sriram Krishnamoorthy,
Jonathan Lifflander, Huiwei Lu, Esteban Meneses, Marc Snir, Yanhua Sun, Kenjiro
Taura, and Pete Beckman. 2018. Argobots: A Lightweight Low-Level Threading
and Tasking Framework. IEEE Transactions on Parallel and Distributed Systems
29, 3 (2018), 512–526. https://doi.org/10.1109/TPDS.2017.2766062

[40] S. Shende and A. D. Malony. Summer 2006. The TAU Parallel Performance System.
International Journal of High Performance Computing Applications 20, 2 (Summer
2006), 287–331.

[41] Dan Terpstra, Heike Jagode, Haihang You, and Jack Dongarra. 2010. Collecting
performance data with PAPI-C. In Tools for High Performance Computing 2009.
Springer, 157–173.

[42] ORNL Tom Papatheodore. 2023. Hello jsrun. online. https://code.ornl.gov/t4p/
Hello_jsrun

[43] Andy B. Yoo, Morris A. Jette, and Mark Grondona. 2003. SLURM: Simple Linux
Utility for Resource Management. In Job Scheduling Strategies for Parallel Pro-
cessing, Dror Feitelson, Larry Rudolph, and Uwe Schwiegelshohn (Eds.). Springer
Berlin Heidelberg, Berlin, Heidelberg, 44–60.

https://doi.org/10.1016/j.future.2020.04.006
https://github.com/RadeonOpenCompute/rocm_smi_lib
https://github.com/RadeonOpenCompute/rocm_smi_lib
https://support.apple.com/guide/activity-monitor/welcome/mac
https://support.apple.com/guide/activity-monitor/welcome/mac
https://doi.org/10.1145/2503210.2503247
https://doi.org/10.1145/2503210.2503247
https://doi.org/10.1109/ProTools49597.2019.00010
https://doi.org/10.1109/PDP.2010.67
https://doi.org/10.1109/CLUSTR.2009.5289150
https://www.intel.com/content/www/us/en/developer/tools/oneapi/data-parallel-c-plus-plus.html#gs.3mmagp
https://www.intel.com/content/www/us/en/developer/tools/oneapi/data-parallel-c-plus-plus.html#gs.3mmagp
https://doi.org/10.1109/HUST.2014.7
https://doi.org/10.1109/HUST.2014.7
https://doi.org/10.1145/1269899.1254906
https://doi.org/10.1016/j.jcp.2016.03.064
https://doi.org/10.1016/j.jcp.2016.03.064
https://ragingmenace.com/software/menumeters/
https://ragingmenace.com/software/menumeters/
https://doi.org/10.1088/1361-648X/aab9c3
https://doi.org/10.1145/2749246.2749266
https://man7.org/linux/man-pages/man1/htop.1.html
https://man7.org/linux/man-pages/man1/htop.1.html
https://man7.org/linux/man-pages/man5/proc.5.html
https://man7.org/linux/man-pages/man1/top.1.html
https://man7.org/linux/man-pages/man1/top.1.html
https://doi.org/10.1016/j.parco.2004.04.001
https://techcommunity.microsoft.com/t5/ask-the-performance-team/using-resource-monitor-to-troubleshoot-windows-performance/ba-p/375008
https://techcommunity.microsoft.com/t5/ask-the-performance-team/using-resource-monitor-to-troubleshoot-windows-performance/ba-p/375008
https://techcommunity.microsoft.com/t5/ask-the-performance-team/using-resource-monitor-to-troubleshoot-windows-performance/ba-p/375008
https://extremecomputingtraining.anl.gov/wp-content/uploads/sites/96/2022/11/ATPESC-2022-Track-1-Talk-9-Muralidharan-Aurora.pdf
https://extremecomputingtraining.anl.gov/wp-content/uploads/sites/96/2022/11/ATPESC-2022-Track-1-Talk-9-Muralidharan-Aurora.pdf
https://docs.nersc.gov/systems/perlmutter/architecture/
https://docs.nersc.gov/systems/perlmutter/architecture/
https://doi.org/10.1109/HPDC.2006.1652159
https://doi.org/10.1109/HPDC.2006.1652159
https://developer.nvidia.com/nvidia-management-library-nvml
https://developer.nvidia.com/nvidia-management-library-nvml
https://docs.olcf.ornl.gov/systems/frontier_user_guide.html
https://docs.olcf.ornl.gov/systems/frontier_user_guide.html
https://docs.olcf.ornl.gov/systems/summit_user_guide.html
https://docs.olcf.ornl.gov/systems/summit_user_guide.html
https://www.openmp.org/specifications/
https://doi.org/10.1145/3569951.3604396
https://doi.org/10.1145/3569951.3604396
https://renci.org/wp-content/uploads/2012/07/TR-12-02.pdf
https://renci.org/wp-content/uploads/2012/07/TR-12-02.pdf
https://www.open-mpi.org/projects/hwloc/
https://www.open-mpi.org/projects/hwloc/
https://www.puppet.com/docs/pe/2023.2/pe_user_guide.html
https://github.com/QMCPACK/miniqmc/tree/OMP_offload
https://doi.org/10.1109/TPDS.2017.2766062
https://code.ornl.gov/t4p/Hello_jsrun
https://code.ornl.gov/t4p/Hello_jsrun

	Abstract
	1 Introduction
	2 Background and Motivation
	3 Implementation
	3.1 Configuration Detection
	3.2 Configuration Evaluation
	3.3 Progress Detection
	3.4 Utilization Report
	3.5 Contention Report
	3.6 Exportation of Data

	4 Experimental Evaluation
	4.1 ZeroSum Overhead

	5 Related Work
	6 Conclusion and Future Work
	Acknowledgments
	References

