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ABSTRACT
While relaxed memory consistency models contribute optimiza-
tions of compilers on multicore CPUs and shared memory dis-
tributed programming languages, their relaxedness makes it dif-
ficult to write programs correctly. To address this problem, the
authors proposed a general model checking framework and imple-
mented a prototype tool McSPIN, which can take a memory con-
sistent model as an input, as well as a program and a property to
be checked, in their previous works. However, one big problem
of McSPIN was that it was prone to suffer from the state explo-
sion problem, and difficult to be applied to programs other than
small example programs. In this paper, we propose optimization
approaches for McSPIN to largely reduce the number of state tran-
sitions to be explored during model checking so that it can be ap-
plied to larger programs. In addition, we actually implemented the
optimizations to McSPIN, and this paper gives several experimen-
tal results with the optimized McSPIN to show effectiveness of the
proposed optimization approaches.

1. INTRODUCTION
A memory consistency model [9] is a formal specification of a
behavior of memory shared among multiple processes/threads in
multicore CPUs and shared-memory distributed programming lan-
guages. Relaxed memory consistency models allow the shared
memory behaves differently from the sequential consistency model,
that is, the results of simultaneous accesses to the shared memory
by multiple processes can be different from any of the results ob-
tained by executing them in an interleaving manner. The impor-
tance of relaxed memory consistency models increases as the num-
ber of cores in multicore CPUs and the number of nodes in shared
memory distributed programming environments increase. This is
because the overhead of ensuring the sequential consistency model
becomes large (due to communication and synchronization costs
among processes). Under the relaxed memory consistency mod-
els, compilers and/or runtimes are allowed to optimize programs
aggressively (e.g., reorder instructions, delay memory operations,
and so on).

However, one big problem of relaxed memory consistency models

1: if (x == NULL) {
2: lock();
3: if (x == NULL) {
4: x = new Singleton();
5: }
6: unlock();
7: }

Figure 1: Double checked locking

is that their relaxedness makes it more difficult to write correct pro-
grams. To see the difficulty, let us consider an example program
shown in Fig. 1, so called double checked locking [28]. The inten-
tion of the program is to initialize a singleton object (line 4) share
by multiple processes, and prevent the processes from initializing
multiple objects concurrently. More specifically, the program first
checks the variable x whether the singleton object is initialized or
not (line 1). Please note that the check is performed without any
synchronization with other processes in order to avoid the cost of
synchronization. If the singleton object seems to be not initialized,
the program acquires a synchronization lock (line 2), and checks
again whether the singleton object is initialized by examining x
(line 3), because it may be already initialized by the other pro-
cesses. If the singleton object is not yet initialized at this point,
it is finally initialized (line 4), and the acquired lock is released
(line 6).

At first glance, it seems that the program of Fig. 1 correctly ini-
tialize the singleton object without any race condition. In fact, the
program behaves correctly under the sequential consistency model.
However, it may not work under some relaxed memory consistency
models (e.g., Java programming language [35], Unified Parallel
C (UPC) [40], Intel Itanium CPU architecture [31], and so on),
because memory operations can be reordered unexpectedly from
the viewpoint of the sequential consistency model (for the details,
please refer to [15] and/or Sec. 4.1, for example).

In the previous works [5, 6], in order to address the difficulty in
programming under relaxed memory consistency models, the au-
thors developed a model checking framework McSPIN[1], which
is able to support various memory consistency models. One ad-
vantage of McSPIN compared to conventional model checking ap-
proaches is that McSPIN is able to take a specification of a memory
consistency model as an input, and performs model checking under
the specified memory consistency model, while the conventional
model checkers typically do not consider relaxed memory consis-
tency models at all, or support only a few relaxed memory models
but they are embedded into the core algorithms of model checking,



that is, it is not apparent how to apply them to different memory
models. Actually, we defined the memory consistency models of
UPC [40], Coarray Fortran [36], and Itanium [31] in McSPIN, and
formally verified the differences among them [6].

This advantage contributes to design and implementation of shared-
memory concurrent/distributed programming languages. Concretely,
language designers and implementors are able to express their mem-
ory consistency models formally. One benefit of the formalization
is that, for example, they are able to confirm that their memory
consistency models are defined precisely as they intend by check-
ing sample programs with McSPIN.

However, the original implementation of McSPIN has a big prob-
lem that it is prone to suffer from the state explosion problem, and
only applicable to small example programs. This is because Mc-
SPIN uses a very relaxed memory consistency model as its base
model in order to cover a wide range of memory consistency mod-
els. Because any program executions and memory operations can
be freely reordered under the base model, the number of state tran-
sitions to be explored during model checking increases drastically.

In this paper, in order to address the state explosion problem of the
original McSPIN, we show 4 optimization approaches that can re-
duce the number of state transitions to be explored. Although the
optimization approaches described in this paper seem to be spe-
cific to the implementation of McSPIN, we believe that they can
be applied to other model checking approaches that adopt program
translations, that is, translate programs under relaxed memory con-
sistency models into ones under sequential consistency, and use
model checkers under sequential consistency not limited to SPIN.

This paper also presents experimental results with McSPIN. The
experimental results show that the optimization approaches are ac-
tually effective, and McSPIN can be applied to larger programs
compared to the previous implementation.

The rest of this paper is organized as follows. First, Sec. 2 briefly
summarizes the previous works [5, 6], that is, the model check-
ing framework which supports various memory consistency models
and its implementation McSPIN. Next, Sec. 3 explains optimiza-
tion approaches for McSPIN that can reduce the number of state
transitions to be explored during model checking. Then, Sec. 4
shows the effectiveness of the optimization approaches by experi-
mental results with McSPIN. Finally, Sec. 5 discusses related work,
and Sec. 6 concludes the paper.

2. SUMMARY OF OUR ORIGINAL MODEL
CHECKER

In this section, we summarize our previous works [5, 6] which de-
scribe our original model checker which is able to support various
memory consistency models. Main contributions of this paper, that
is, optimization approaches for the original model checker are de-
scribed in the next sections (Sec. 3 and 4).

The key idea of the original model checker is as follows. First,
we defined a very relaxed base model in which instruction execu-
tions and memory operations can be almost freely reordered so that
various kinds of relaxed memory consistency models can be cov-
ered. Based on the base model, memory consistency models can be
defined as constraint rules that restrict how instruction executions
and memory operations are reordered. Our model checker checks
whether the given program satisfies the given property by explor-

Figure 2: Overview of our abstract machine

(State) S F 〈〈P1, P2, . . . , Pm〉,O〉
(Proc.) PF 〈R1,R2, . . . ,Rm〉

(Raw Proc.) R F 〈{x 7→ v}, {` 7→ v}, L, I, j〉
(Insts.) I F i1; i2; i3; . . . ; ik

(Inst.) i F 〈L, A, ι〉
(Raw Inst.) ι F Move x← t | Load x← [x′]

| Store [x]← x′ | Jump L if x | Nop
(Term) t F x | v | t + t′ | t − t′

(Attrs.) AF {a, . . . , a}
(Attribute) a (user-defined attributes)

where
(Process Identifier) p, q (finite set of process identifier)
(Variable) x (finite set of local variables)
(Location) ` (finite set of addresses in memory)
(Label) L (finite set of labels in instructions)
(Value) v F n | ` | L
(Branch Counter) j (integers)

(Operations) OF {o, . . . , o}
(Operation) o F Fetch j

q p i | Issue j
q p i

| Execute j
q p i ` v | Reflect j

q
[
p⇒ p′

]
i ` v

Figure 3: Definition of our abstract machine

ing all the states that can be reached during the execution of the
given program in consideration of the reordering of instruction ex-
ecutions and memory operations and the given constraint rules that
represent memory consistency models.

2.1 Base Model
Fig. 2 shows a very brief overview of our base model. The base
model consists of multiple processes and each process has its own
memory. The memories associated with processes are isolated each
other, that is, one process cannot access the memories of the other
processes. Each process manipulates its own memory by executing
memory access instructions (Execute in Fig. 2), and the effects
of the memory manipulation are reflected (propagated) to the other
memories (Reflect in Fig. 2). In the base model, Executes and
Reflects are freely reordered except for several straightforward
constraints (e.g., Execute of a memory access instruction never
occurs before the instruction is issued, Reflect of an instruction
execution never occurs before its corresponding instruction is exe-
cuted, and so on).

A more formal definition of the abstract machine of our base model
is given in Fig. 3. The state of the abstract machine S consists of a
fixed number of processes P, and a set of operations O. O denotes
actions that can be taken by the abstract machine. Its details are



explained later in the end of this section. Each process Pq consists
of a set of raw processes R (which represent all the processes in
the abstract machine), and each raw process R consists of a state of
variables (a map from local variables x to values v, where v denotes
an integer value n, a memory address `, or an instruction label L),
a state of a memory (a map from addresses ` to values v), a la-
bel L (which represents the program counter), instructions I, and a
branch counter j (which represents the number of executed branch
instructions).

The reason why each process holds raw processes for all the pro-
cesses is that several relaxed memory consistency models allow one
process to speculate the behaviors of the other processes, and do not
require the behaviors of a process speculated by different processes
to be consistent in some cases.

I is an ordered list of instructions i, which is a tuple of a label L,
attributes A, and a raw instruction ι. ι consists of local variable ac-
cess instructions, memory access instructions, branch instructions,
and nop. More specifically, Move x← t stores the evaluated value
of term t to variable x. Load xd ← [xs] loads the value stored at the
address represented by xs, and stores it to local variable xd. Store
[xd]←xs stores the value of variable xs to the address represented by
xd. Jump L if x branches to the instruction labeled L, if the condi-
tion value represented by x is not equal to the integer value 0. Nop
does nothing. The reason why we introduced Nop to the abstract
machine is that it is useful to represent special instructions that are
specific to individual memory consistency models by utilizing the
attributes A, where A represents a fixed number of user-defined at-
tributes a. Details of how to use the attributes to describe memory
consistency model-specific instructions are explained in Sec. 2.3.

As slightly mentioned above, O represents a set of operations o that
can be performed by the abstract machine. Basically, the abstract
machine non-deterministically takes one operation (action) from O,
and performs it.

More specifically, o consists of four operations. Fetch j
q p i repre-

sents a fetch of an instruction i on process Pp observed (or spec-
ulated) by Pq, where j represents how many times branch instruc-
tions are executed. When the program counter L points to an in-
struction in I, its corresponding fetch operation is added to O of
the state of the abstract machine. Please note that adding a fetch
operation to O does not mean that its corresponding instruction is
actually fetched. Rather, it indicates that the instruction is ready to
be fetched. If the instruction is actually fetched, the fetch operation
is removed from O.

Issue j
q pi represents an issue of the fetched instruction i on process

Pp observed by Pq, where j has the same meaning as in Fetch.
Issue is added to O when its corresponding instruction is fetched
(that is, Fetch is removed from O), and removed from O if the
instruction is actually issued.

Execute j
q pi`v represents an execution of a memory access instruc-

tion which is processed by Pp and observed by Pq, where j has the
same meaning as in Fetch, ` represents the target memory address,
and v denotes the operand value. Execute is added to O when its
corresponding memory access instruction is issued (that is, Issue
is removed from O), and removed from O if the instruction is ac-
tually executed. Remark that states (variables and locations) of Pp

are updated when the issued instruction is executed, but the effect
cannot be seen from the other processes.

Reflect j
q
[
p⇒ p′

]
i ` v represents a reflection (propagation) of the

effect of an execution of memory store instruction on process Pp

to the other process P′p (which is observed by Pq), where j has
the same meaning as in Fetch, ` represents the target memory ad-
dress, and v denotes the operand value to be stored. Reflect is
added to O when its corresponding memory store instruction is ex-
ecuted (that is, Execute is removed from O), and removed from O
if the effect of the instruction is reflected on the other process. One
thing different from Fetch, Issue, and Execute is that multiple
Reflects for all the processes are added to O. This is because it is
necessary to handle the reflections to each process separately.

2.2 Execution Traces
In addition to the base model defined in the previous section, we
also define execution traces which represent the behavior (state
transition) of the abstract machine. Informally, an execution trace
represents the order of actions during the state transition of an ab-
stract machine, that is, the order in which operations are taken out
from O in the abstract machine state S (see Fig. 3). More specif-
ically, an execution trace (denoted as τ) is defined as an ordered
(finite or infinite) sequence of operations o (defined in Fig. 3) as
follows:

(Trace) τF o1; . . . ; on; . . .

In addition, we denote all the admissible traces under all the state
transitions (as slightly mentioned in Sec. 2.1) from the state S as
TS .

2.3 Memory Consistency Model
Under the base model and the execution traces, memory consis-
tency models can be defined as constraints which restrict the or-
der among operations, that is, narrows the range of the admissible
traces (described in the previous section). For example, the sequen-
tial consistency model [9] can be represented as constraint rules that
allow no reordering among operations.

More formally, we define the equational first-order predicate logic
with formulae ϕwhich consists of a binary predicate (≤) and logical
connectives ¬ (negation), ⊃ (implication), and ∀ (universal quan-
tifier). Intuitively, o ≤ o′ denotes a constraint which ensures that
o is performed before o′ is performed (or o is equal to o′). It can
be considered to be an extension of the so-called happens-before
relation [33]. In addition, we define τ � ϕ if the trace τ satisfies the
formula ϕ.

With the equational first-order predicate logic, memory consistency
models are defined as a set of axioms (Φ) of the logic. For exam-
ple, the following axiom (formula) ensures that the effect of an ex-
ecuted store instruction on one process is immediately reflected to
the other processes:

Execute j1
q p1 i1 ` v < o2 ⊃ Reflect

j1
q
[
p1⇒ p3

]
i1 ` v < o2

where i1 ≡ Store [x]← x′ and o2 ≡ Issue
j2
q p2 i2, which means

that any o2 must waits reflections of an executed instruction i1 if it
advances o2 (universal quantifiers are omitted and o < o′ denotes
o ≤ o′ where o , o′). In our previous work [6], we confirmed that
the equational first-order predicate logic can express all the rules of
Sec. 3 of the Itanium specification manual [30] and Appendix A of
the UPC specification manual [40] can be expressed. The concrete
definitions of the Itanium and UPC memory consistency models for
McSPIN are also bundled in the distribution of McSPIN [1]. Their
details will be explained in our forthcoming working paper [4].



Figure 4: An outline of McSPIN

In addition, we also define all the admissible traces of the abstract
machine state S under a memory consistency model Φ (denoted as
Ts(Φ)) as follows:

TS (Φ) ≡ {τ | τ ∈ TS and ∀ϕ ∈ Φ. τ � ϕ}

2.4 Model Checking Framework
Based on the notions of the abstract machine, the execution traces,
and the representations of memory consistency models (explained
in the previous sections), model checking which checks whether a
given program (S ) satisfies a given property under a given memory
consistency model (Φ) can be implemented by exploring all the
state transitions derived from TS (Φ) and verifying that all of them
satisfy the given property. In this section, we briefly describe the
implementation of our model checking framework [5, 6], named
McSPIN.

Fig. 4 shows the overview of of our model checking framework.
As shown in the figure, McSPIN consists of a front-end and back-
end. The back-end utilizes the SPIN model checker [29] for ac-
tual model checking, that is, exploring all the state transitions. The
front-end takes a program and a memory consistency model as in-
puts, and translates them into PROMELA code, which is the input
format of the SPIN model checker.

One big difference from conventional model checkers is that Mc-
SPIN takes a memory consistency model as an input, while in the
conventional checkers specific memory consistency models are em-
bedded into them and it is necessary to re-design their model check-
ing theories and re-implement them in order to switch one memory
consistency model to another. On the other hand, because McSPIN
is able to take a memory consistency model as an input, we can
easily perform model checking under various memory consistency
models without worrying the re-design and re-implementation.

As the input format of the front-end of McSPIN, we designed a
simple modelling language equipped with variables/attributes dec-
larations, and assignment/conditional statements. In addition, the
language also has the notion of synchronization primitives (e.g.,
mutex locks, barriers, fences, etc.). In this paper, we do not elab-
orate the formal definition of our modelling language because it is
simple and straightforward. Instead, we explain how to translate
the input language to PROMELA code in the rest of this section.

The basic idea of the translation from our language to PROMELA
is to enumerate all the possible operations from the instructions of
processes, and generate the do statement (a repetition with non-
deterministic choice) of PROMELA whose choice clauses corre-
spond to the enumerated operations. For example, let us consider
the following two processes P1 and P2:

P1 : Load r1← [x] P2 : Store [x]← r2

The front-end of McSPIN enumerates the following 16 operations
that are possible during the execution of the two processes:

Fetch1
P1

P1 i1 Issue1
P1

P1 i1 Execute1
P1

P1 i1 ` v1

Fetch1
P1

P2 i2 Issue1
P1

P2 i2 Execute1
P1

P2 i2 ` v
′
1

Reflect1
P1

[P2⇒ P1] i2 ` v
′
1

Reflect1
P1

[P2⇒ P2] i2 ` v
′
1

Fetch1
P2

P1 i1 Issue1
P2

P1 i1 Execute1
P2

P1 i1 ` v2

Fetch1
P2

P2 i2 Issue1
P2

P2 i2 Execute1
P2

P2 i2 ` v
′
2

Reflect1
P2

[P2⇒ P1] i2 ` v
′
2

Reflect1
P2

[P2⇒ P2] i2 ` v
′
2

where i1 ≡ Load r1 ← [x], i2 ≡ Store [x] ← r2, ` is a location
of x, v1 and v2 are the values stored in ` observed by P1 and P2,
respectively, and v′1 and v′2 are the values of r2 observed by P1 and
P2, respectively. Please recall that, in our base model, each process
can have its own view of the abstract machine represented by the
subscripts of the operations, as described in Sec. 2.1.

With the enumerated operations o1, o2, . . ., the front-end generates
the do statement of PROMELA as follows:

do
:: (translation of o1);
:: (translation of o2);
:: ...
od;

Roughly speaking, the do statement of PROMELA chooses and
executes one of clauses (begin with ‘::’) non-deterministically,
and repeats the choice and execution (until the break statement is
executed).

More specifically, an operation o is translated to a clause of the do
statement as follows:

:: end_o == 0 -> o; clock++; end_o = clock;

where clock is a variable which represents a global time counter,
and end_o is a variable which holds the value of the time counter
when o is performed. Both the variables are initialized to 0. There-
fore, the guard condition of the clause (the left-hand side of ‘->’)
end_o == 0 indicates that o has not been executed yet. Thus, the
clause is only executed once. The reason why we introduce the
global time counter is that using the counter is a straightforward to
record orders in which operations are performed.

For example, Execute1
P2

P1 i1 lv1 (one of the operations enumerated
above) is translated as follows:

:: end_execute_on_1_by_2_L1 == 0 ->
r1_on_1_by_2 = memory_on_1_by_2[x_on_1_by_2];
clock++; end_execute_on_1_by_2_L1 = clock;

where _L1 denotes the label of i1, and _on_1 and _by_2 represent
that P2 observes that the operation is performed by P1. In addition,
memory_on_1_by_2 denotes the memory of P1 observed by P2.



The explanation so far does not take account of loops. In order to
handle loops, McSPIN uses a bounded model checking approach [18,
17]. More specifically, instead of introducing the scalar variable
end_o for each operation o, we use a fixed length array end_o_[LEN]
whose each element represents o with a different branch counter j.
Please note that j denotes how many times branch instructions are
executed (as explained in Sec. 2.1). That is, LEN denotes the bound
of the bounded model checking. For example, Execute j

P2
P1 i1 l v1

is translated as follows:

:: end_execute_on_1_by_2_L1_[j-1] == 0 ->
r1_on_1_by_2 = memory_on_1_by_2[x_on_1_by_2];
clock++; end_execute_on_1_by_2_L1_[j-1] = clock;

The front-end of McSPIN then generates the PROMELA code which
launches PROMELA processes that contain the above-mentioned
do statements for each pair of processes as follows:

active main () {
...
run process_on_1_by_1();
run process_on_2_by_1();
...
run process_on_n_by_1();

...

run process_on_1_by_n();
run process_on_2_by_n();
...
run process_on_n_by_n();
...

}

where the PROMELA process process_on_p_by_q represents the
execution of instructions on the process Pp which is observed by
the process Pq.

During the execution of the launched PROMELA processes, the
execution traces (explained in Sec. 2.2) are recorded as the intro-
duced variables end_o. Please note that the variables end_o hold
the information when the operation o is performed. Therefore, the
execution trace can be obtained by sorting them.

Finally, the front-end of McSPIN generates an assertion statement
of PROMELA which checks whether the obtained execution trace
is admissible under the base model and the specified memory con-
sistency model, and satisfies the specified property.

3. OPTIMIZATIONS
One big problem of the model checking approach described in the
previous section is that it performs unnecessary exploration of state
transitions, thus it easily suffers from the state explosion problem.
For example, as described in the last paragraph of the previous sec-
tion, apparently inadmissible execution traces (e.g., traces in which
Executes performed before their corresponding Issues are per-
formed) are examined in the unnecessary precise way.

In this section, we introduce four optimization approaches which
are able to dramatically reduce the number of the state transitions
during model checking. The experimental results of measuring the
effects of the optimization approaches are shown in the next section
(Sec. 4).

3.1 Enhancing Guards

Let us consider a formula o1 < o2 that represents a constraint rule
which denotes that o1 has to be performed before o2 (e.g., o1 is
Fetch and o2 is Issue). The original algorithm of translation (de-
scribed in Sec. 2.4) generates the following PROMELA code:

:: end_o1 == 0 -> o1; clock++; end_o1 = clock;
:: end_o2 == 0 -> o2; clock++; end_o2 = clock;

However, the above PROMELA code is apparently inefficient be-
cause the code allows o2 to be performed before o1, which is inad-
missible under the condition o1 < o2.

In order to reduce the number of state transition to be examined, the
front-end of McSPIN modifies the guard condition of o2 as follows:

:: end_o1 == 0 -> o1; clock++; end_o1 = clock;
:: end_o1 > 0 && end_o2 == 0 ->

o2; clock++; end_o2 = clock;

That is, o2 will not be chosen until o1 is performed. This enhance-
ment of the guard condition can reduce the number of state transi-
tions to half.

Furthermore, a more general formula o1 < o2 ⊃ o3 < o4 can be
represented as the following code:

...
:: (!(end_o1 < end_o2) || end_o3 > 0) && end_o4 == 0
-> o4; clock++; end_o4=clock;

...

Thus, this optimization excludes apparently impossible traces by
examining the specified memory consistency model. More specifi-
cally, McSPIN takes and follows a memory consistency model, and
generates a PROMELA code that does not contain such traces.

3.2 Disabling Speculation
While some memory consistency models allow processes to specu-
late behaviors of the others (e.g., UPC [40]), there also exist a large
number of memory consistency models that do not allow the specu-
lation. Under the non-speculative memory consistency models, it is
unnecessary to distinguish who observes execution of the abstract
machine. For example, if the abstract machine consists of two pro-
cesses, the original algorithm (described in Sec. 2.4) generates the
following PROMELA code:

active main () {
...
run process_on_1_by_1();
run process_on_2_by_1();
run process_on_1_by_2();
run process_on_2_by_2();
...

}

However, under the non-speculative memory consistency models,
the behaviors of process_on_1_by_1 and process_on_1_by_2
are non-distinguishable. Therefore, it is suffice to generate the fol-
lowing code:

active main () {
...
run process_on_1_by_1();
run process_on_2_by_1();
...

}



3.3 Prefetching Instructions
Generally speaking, instructions to be fetched depend on the re-
sults of branch instructions (Jump), and the results vary depending
on memory consistency models. Therefore, the original algorithm
(explained in Sec. 2.4) handles instruction fetches (Fetch) non-
deterministically as follows:

do
:: (Fetch1

P1
P1 i1);

:: (Fetch1
P1

P1 i2);

:: ...
od;

However, if the instructions to be fetched are known statically (e.g.,
if there are no branch instructions in the program), their Fetch can
be performed in any order without loss of generality. Thus, it is
suffice to generate the following code (instructions are fetched in
program order before any other operations):

(Fetch1
P1

P1 i1);

(Fetch1
P1

P1 i2);

do
:: ...
od;

3.4 Removing Global Time Counter
Although the original algorithm of Sec. 2.4 handles the value of
the global time counter explicitly, but it is sometimes unnecessary
to handle the exact value. Instead, it is suffice to keep track of the
order in which operations are performed. Forgetting the exact value
of the time counter and keeping track of only the order among op-
erations can reduce the number of state transitions to be explored,
depending on constraint rules of memory consistency models.

For example, let us consider a constraint rule o1 < o2 ⊃ o3 < o4.
When considering the constraint rule, it is suffice to keep track
of the order of o1 and o2, and that of o3 and o4. More specifi-
cally, we can remove the counter variable clock by introducing
two new variables ord_o1_o2 and ord_o3_o4 which record the or-
ders among the operations, as in the following code:

do
:: end_o1 == 0 -> o1; end_o1 = 1;
:: end_o2 == 0 -> o2; end_o2 = 1; ord_o1_o2 = end_o1;
:: end_o3 == 0 -> o3; end_o3 = 1;
:: (!(ord_o1_o2 > 0) || end_o3 > 0) && end_o4 == 0

-> o4; end_o4 = 1; ord_o3_o4 = end_o3;
od;

Please note that, in the above code, the variables end_oi no longer
hold the values of the time counter when the operations oi are per-
formed. Instead, they only hold the information whether the oper-
ations are performed or not. In addition, the variable ord_o1_o2

(ord_o3_o4) holds the information whether o1 (o3) is performed
before o2 (o4) or not.

After all the operations are performed (that is, ∀i.end_oi = 1), the
number of possible states is 3 ({ord_o1_o2 = 0, ord_o3_o4 = 0},
{ord_o1_o2 = 0, ord_o3_o4 = 1}, and {ord_o1_o2 = 1, ord_o3_o4 =

1}), while the number is 24 (= 4!) (the factorial of the number of
operations) in the original algorithm of Sec. 2.4.

4. EXPERIMENTS

Process P1 Process P2

1: Load r1← [x] 1: Load r1← [x]
2: Jump 10 if r1 2: Jump 10 if r1

3: Nop : lock 3: Nop : lock
4: Load r2← [x] 4: Load r2← [x]
5: Jump 9 if r2 5: Jump 9 if r2

6: Move r3← 1 6: Move r3← 1
7: Store [c]← r3 7: Store [c]← r3

8: Store [x]← r3 8: Store [x]← r3

9: Nop : unlock 9: Nop : unlock
10: Load r4← [x]
11: Load r5← [c]

Figure 5: Double checked locking in our modelling language

In order to show the effectiveness of the optimization approaches
explained in Sec. 3, this section describes three experimental re-
sults with our model checker McSPIN. More specifically, Sec. 4.1
shows the result of model checking the double checked locking al-
gorithm shown in Sec. 1, Sec. 4.2 shows the result of model check-
ing Dekker’s mutual exclusion algorithm, and Sec. 4.3 measures
the effects of optimization approaches by model checking small
example programs taken from the specification documents of Ita-
nium [31] and UPC [40].

The experimental environment is as follows:

CPU Intel Xeon E5-2670 2.6GHz 8cores × 4
Memory DDR3-1066 1.5TB
SPIN version 6.3.2
GCC version 4.4.6

4.1 Double Checked Locking Algorithm
Fig. 5 shows the double checked locking algorithm in our mod-
elling language. Please note that, compared to Fig. 1, if statements
are replaced by branch instructions (Jump), and the instantiation of
an object (new Singleton()) is represented by the store instruc-
tion to the variable c. In addition, please also note that lock()
and unlock() are represented as Nops with user-defined attributes
lock and unlock. Each memory consistency model defines the se-
mantics of the attributes lock and unlock in our experiments, but
we do not elaborate the semantics in this paper (please refer to our
previous paper [6] for details).

In the experiment, we checked whether the property r4 = 1 ⊃ r5 =

1 holds after the two processes finished under various memory con-
sistency models with McSPIN. Under the sequential consistency
model, we confirmed that the code of Fig. 5 satisfies the property.
McSPIN took 0.113 seconds and used 2.530 MB memory to exam-
ine 3638 state transitions exhaustively, when all the optimization
approaches are enabled.

On the other hand, under relaxed memory consistency models, the
property may not hold. For example, under Itanium memory model [31],
McSPIN found a counterexample by examining 2000 state transi-
tions in 0.096 seconds with 903 KB memory usage with all the
optimizations enabled.

Roughly speaking, the obtained counterexample is as follows. First,
let us suppose that the process P2 holds the lock (line 3) and stores
the value 1 to the variables c and x (lines 7 and 8). Under Itanium



Process P1 Process P2

x=1; y=1;
while (y==1) { while (x==1) {
if (t==1) { if (t==0) {
x=0; y=0;
while (t==1) {} while (t==0) {}
x=1; y=1;

} }
} }
z++; z++;
fence; fence;
t=1; t=0;
x=0; y=0;

Figure 6: Dekker’s algorithm

Process P1 Process P2

1: Move r1← 1 1: Move r1← 1
2: Store [x]← r1 2: Store

[
y
]
← r1

3: Load r2←
[
y
]

3: Load r2← [x]
4: Move r2← 1 − r2 4: Move r2← 1 − r2

5: Jump 17 if r2 5: Jump 17 if r2

6: Load r3← [t] 6: Load r3← [t]
7: Move r3← 1 − r3 7: Jump 15 if r3

8: Jump 15 if r3 8: Move r4← 0
9: Move r4← 0 9: Store

[
y
]
← r4

10: Store [x]← r4 10: Load r5← [t]
11: Load r5← [t] 11: Move r5← 1 − r5

12: Jump 11 if r5 12: Jump 10 if r5

13: Move r6← 1 13: Move r6← 1
14: Store [x]← r6 14: Store

[
y
]
← r6

15: Move r7← 1 15: Move r7← 1
16: Jump 3 if r7 16: Jump 3 if r7

17: Load r8← [z] 17: Load r8← [z]
18: Move r8← r8 + 1 18: Move r8← r8 + 1
19: Store [z]← r8 19: Store [z]← r8

20: Nop:fence 20: Nop:fence
21: Move r9← 1 21: Move r9← 0
22: Store [t]← r9 22: Store [t]← r9

23: Move r10← 0 23: Move r10← 0
24: Store [x]← r10 24: Store

[
y
]
← r10

Figure 7: Dekker’s algorithm in our modelling language

memory model,

Reflect1
P1

[P2⇒ P1] (7, ∅, Store [c]← r3) `1 1 <

Reflect1
P1

[P2⇒ P1] (8, ∅, Store [x]← r3) `2 1

is not ensured where `1 and `2 are locations of c and x, respectively.
That is, a reflection of Store [x]← r3 to P1 can be reordered with
that of Store [c]← r3. Now, let us suppose that the process P1

observes the reflection of Store [x]← r3, that is, x = 1, at line 1.
Then, the process P1 jumps to line 10, and tries to load values from
x and c (lines 10 and 11). At this point, because Itanium memory
model allows that the effect of Store [c]← r3 of P2 is not reflected
to P1 as described above, Load r5← [c] of P1 at line 11 can observe
c = 0. Thus, the property r4 = 1 ⊃ r5 = 1 does not hold.

4.2 Dekker’s Algorithm
Fig. 6 shows Dekker’s mutual exclusion algorithm in pseudo code.
The intention of the algorithm is to prevent the two processes P1

and P2 simultaneously access the variable z, that is, avoid race con-

Table 1: Results of (bounded) model checking Dekker’s algo-
rithm under the sequential consistency model

bound of # of state memory time
iterations transitions (MB) (sec.)

1 37862 71.037 1.044
2 76960 423.094 5.222
3 131334 1459.484 17.468
4 204008 3828.921 45.421

dition on z. The reason why we chose Dekker’s algorithm as the
target of our experiment is that it consists of a slightly large num-
ber of instructions and contains (nested) loops.

In our modelling language, the pseudo code of Fig. 6 can be trans-
lated to the instructions shown in Fig. 7. Please note that fence
in the pseudo code (which ensures that any non-reflected memory
effects are reflected to the other processes) is represented by Nop
with a user-defined attribute fence. In the same way as the at-
tributes lock and unlock of Sec. 4.1, each memory consistency
model defines the semantics of the attribute fence in our experi-
ments, but we do not elaborate it in this paper.

In the experiment, we checked whether z = 2 holds after the two
processes finishes under various memory consistency models with
McSPIN. Under the sequential consistency model, we confirmed
that z = 2 holds on all the execution traces when increasing the
bound of bounded model checking (that is, the number of iterations
when handling loops) up to 4. More specifically, McSPIN took
about 45.4 seconds and used about 3800 MB memory when the
bound is set to 4. Tab. 1 shows more detailed results.

On the other hand, under relaxed memory consistency models, z =

2 may not hold. For example, under Itanium memory model [31],
McSPIN found a counterexample by examining 9301219 state tran-
sitions in 111.279 sec. with 3889.837 MB.

Roughly speaking, the obtained counterexample is as follows. First,
let us suppose that that P1 issues Store [x] ← r1 and P2 issues
Store

[
y
]
← r1 at line 2. Because the effects of the two Stores

may not be reflected to the other processes under Itanium memory
model, both the processes can branch to line 17 simultaneously,
that is, the two processes can observe z = 0 when issuing Load
r8 ← [z] at line 17. Thus, because it is possible that z = 1 after
the two processes finish, the property z = 2 may not hold under
Itanium memory model.

4.3 Measuring Effects of Optimizations
In this section, we measure how the optimization approaches (de-
scribed in Sec. 3) improve the performance of our model checking.
In the experiments, we used the same sample programs as our pre-
vious work [6]. More specifically, they are taken from the specifi-
cation documents of Itanium [31] and UPC [40].

Table 2 shows a comparison between our previous work [6] and
the current work. The first column lists the names of the sam-
ple programs, where itanium(n) and upc(n) represent the programs
shown in Sec. n of the specification documents of Itanium [31] and
UPC [40]. The second column lists the number of processes in the
programs, the third column lists the total number of instructions
of all the processes. The fourth column lists the types of property
checking. More specifically, V.C.means that we need to verify va-



Table 2: Comparison with our previous work
Our previous work [6] All the possible optimizations applied

program # of state memory time # of state memory time
#p #i type transitions (MB) (sec.) transitions (MB) (sec.)

itanium(A.1.4) 2 4 C.E. 1484 2.658 1.654 580 0.114 0.025
itanium(A.2.5) 2 4 V.C. 31215 12.200 1.688 216 0.062 0.019
itanium(A.3.6) 2 4 C.E. 55 2.219 1.642 635 0.118 0.026
itanium(A.4.7) 2 6 V.C. 168840 60.675 1.993 271 0.081 0.009
itanium(A.5.8) 2 5 V.C. 275298 100.925 2.128 185 0.061 0.012
itanium(A.5.9) 2 4 C.E. 31215 12.419 1.690 192 0.053 0.023
itanium(A.6.10) 2 6 C.E. 37346 16.696 1.977 293 0.088 0.018
itanium(A.7.11) 2 8 V.C. 2871250 1197.534 7.010 365 0.123 0.027
itanium(A.8.12) 4 6 V.C. — — — 106627 21.076 0.591
itanium(A.9.13) 3 6 V.C. 5.889462e+08 327968.442 1839.239 2983 0.803 0.033
upc(B.5.1) 2 4 C.E. 5960 4.084 1.588 171 0.064 0.021
upc(B.5.2) 2 4 V.C. 1801 2.768 1.688 461 0.180 0.019
upc(B.5.3) 2 4 C.E. 414 2.329 1.566 177 0.065 0.019
upc(B.5.4) 2 2 C.E. 458 2.329 1.565 671 0.233 0.024
upc(B.5.5) 2 4 V.C. 1944 2.877 1.705 449 0.176 0.019
upc(B.5.6) 2 5 C.E. 162 2.219 1.700 321 0.127 0.023
upc(B.5.7) 2 6 V.C. 1250299 551.563 4.033 3639 1.639 0.024
upc(B.5.8) 2 4 V.C. 14417 7.264 1.599 1457 0.536 0.026
upc(B.5.9) 2 4 C.E. 9865 5.839 1.594 964 0.349 0.012
upc(B.5.10) 2 5 C.E. 2364 3.097 1.667 379 0.149 0.023
upc(B.5.11) 2 6 V.C. 145 2.219 1.552 330 0.119 0.019
upc(B.5.12) 4 6 V.C. 44238 19.438 1.729 607 0.243 0.024

lidity of the given property, and C.E.means that we need to find
a counterexample. The fifth, sixth, and seventh columns list the
number of state transitions, the amounts of consumed memory, and
the elapsed times in our previous work[6], while the eighth, ninth,
and tenth columns lists the numbers when all the optimization ap-
proaches described in Sec. 3 are applied (if possible). Please note
that dashes (—) in the table means that model checking cannot be
finished due to out of memory.

As Tab. 2 shows, the amounts of consumed memory and elapsed
time are largely reduced in all the sample programs compare to our
previous work. The numbers of state transitions are also largely
reduced in almost all the cases, but the numbers sometimes slightly
increased in a few cases. This is because we newly introduced
the operation Execute in this paper, which was not explicitly han-
dled in our previous works. In our previous works, when a thread
Pi issues an instruction, its local effect in the thread (denoted by
Execute Pi) and remote observation by the thread (denoted by
Reflect [Pi ⇒ Pi]) are not distinguished because it is unneces-
sary to distinguish them in verifying sample programs written in
the specification documents of Itanium [31]. However, this work
explicitly distinguished them, and we precisely expressed all the
rules by using Execute.

Tab. 3 and 4 show breakdowns of the effects of each optimization
approach. More specifically, they compare the number of state
transitions during model checking with varying the optimization
approaches described in Sec. 3. In the tables, DS means that dis-
abling speculation (explained in Sec. 3.2) is applied, PI means that
prefetching instructions (explained in Sec. 3.3) is applied, RC means
that removing the global time counter (explained in Sec. 3.4) is ap-
plied. Please note that the optimization of enhancing guards (ex-
plained in Sec. 3.1) is always applied in all the cases. In addition,
please also note that DS (the optimization of disabling speculation)

Table 4: Comparison of Number of State Transitions with
Varying Optimizations (under UPC memory model)

PI,RC RC PI
upc(B.5.1) 171 262 601 6726
upc(B.5.2) 461 1113 3517 7031898
upc(B.5.3) 177 282 983 8497
upc(B.5.4) 671 1348 90177 21473581
upc(B.5.5) 449 1193 3655 7332411
upc(B.5.6) 321 584 3607 103253
upc(B.5.7) 3639 12045 2862369 —
upc(B.5.8) 1457 2871 16733 40178890
upc(B.5.9) 964 1865 49961 18666427
upc(B.5.10) 379 727 3519 126362
upc(B.5.11) 330 1628 13128 —
upc(B.5.12) 607 3015 93369 —

is not applied to Tab. 4 because UPC memory model allows specu-
lative behaviors of processes.

As shown in Tab. 3, when applying each optimization approach
individually, the most effective optimization was PI (prefetching
instructions), while RC (removing the global time counter) had no
effect under Itanium memory model. DS (disabling speculations)
showed its effectiveness when applied in conjunction with PI and/or
RC. In all the cases, the best results were obtained when all the
optimization approaches were applied.

On the other hand, under UPC memory model, individually apply-
ing each optimization approach reduced the number of state tran-
sitions largely (as shown in Tab. 4), while the best results were
obtained when all the (applicable) optimization approaches were
applied, in the same way as Itanium memory model.



Table 3: Comparison of Numbers of State Transitions with Varying Optimizations (under Itanium memory model)
DS,PI,RC DS,RC DS,PI DS PI,RC PI RC

itanium(A.1.4) 580 1111 1721761 37941192 4284594 4284594 97051291 97051291
itanium(A.2.5) 216 659 49941 14067196 123201 123201 35688796 35688796
itanium(A.3.6) 635 1130 297695 4978718 740983 740983 12717672 12717672
itanium(A.4.7) 271 2149 352871 — 915719 915719 — —
itanium(A.5.8) 185 536 39853 9109062 103084 103084 24035899 24035899
itanium(A.5.9) 192 635 49941 14067196 123201 123201 35688796 35688796
itanium(A.6.10) 293 1513 306560 1.0639732e+09 823970 823970 — 2.8950955e+09
itanium(A.7.11) 365 4657 5016477 — 14157037 14157037 — —
itanium(A.8.12) 106627 366795 — — — — — —
itanium(A.9.13) 2983 8451 1.2706668e+08 — 4.5898596e+08 4.5898596e+08 — —

5. RELATED WORK
While the conventional model checkers typically do not consider
relaxed memory consistency models (e.g., [29, 25, 27, 7, 8], and
so on), a number of works that tackle program verification under
relaxed memory consistency models have been proposed in recent
years [38, 39, 43, 41, 42, 21, 37, 20, 26, 32, 12, 13, 34, 14, 19, 10,
11, 24, 2, 3]. However, there exist few works on optimization of
model checking under relaxed memory models [24, 2, 3].

Dan et al. [24] proposed a predicate abstraction approach for model
checking under relaxed memory consistency models. In their ap-
proach, a program is first checked under the sequential consistency
model with a standard predicate abstraction approach. Next, the
program is transformed in the way that the characteristics of the
memory consistency model is embedded in the translated program
so that it can be checked under the sequential consistency model
(similar to [10]). Then, in order to avoid the state explosion prob-
lem in model checking, the translated program is abstracted to a
boolean program with the predicates inferred from the predicates
obtained in the first predicate abstraction.

One difference from their approach and ours is that their approach
is able to fully leverage the power of predicate abstraction by find-
ing predicates from the property to be checked, while our approach
utilizes the notion of predicate abstraction only in removing the
global time counter by replacing it with the predicates that repre-
sent the order between two operations (Sec. 3.4).

Another difference is that our approach can support various mem-
ory consistency models because it is able to take a specification
of a memory consistency model as an input, while their approach
is specific to Partial Store Order memory model (PSO) and Total
Store Order memory model (TSO), and it is not apparent whether
their approach can be applied straightforwardly to the other mem-
ory consistency models.

Abdulla et al. [2, 3] proposed a program verification framework
for safety properties under relaxed memory consistency models.
In their approach, an input program to be checked is abstracted
by combination of predicate abstraction and abstraction of store
buffers, and the problem of checking safety properties is reduced
to the reachability problem on the abstracted program. Then, the
reachability problem is solved by existing model checkers such
as BLAST [16] and CBMC [23]. Regarding predicate discovery,
they adopt a conventional counterexample guided abstraction re-
finement (CEGAR [22]) approach.

One difference from their approach and ours is that, as explained
above, our approach does not fully leverage the power of predicate
abstraction (only used in abstracting away the global time counter)

unlike their approach.

Another difference is that, as also described above, our approach
supports various memory consistency models, while their approach
is specific to TSO.

Burckhardt et al. [21] also proposed a program verification frame-
work under relaxed memory consistency models. In their approach,
an input program to be checked is translated into an intermediate
representation including stores, loads, fences, and synchronization
instructions. Finally, the intermediate representation with a mem-
ory consistency model is translated into a SAT formula, which is
checked by a SAT solver. Their approach is similar to our work
with respect to translating input programs into intermediate repre-
sentations and using solvers. However, our approach supports var-
ious memory consistency models, while their approach is specific
to sequential consistency and a certain relaxed memory consistency
model (called Relaxed in [21]).

6. CONCLUSION
This paper described the optimization approaches for our model
checker McSPIN. As shown in our previous papers [5, 6], McSPIN
is able to perform model checking under various memory consis-
tency models by taking a specification of a memory consistency
model as an input. However, the original implementation of Mc-
SPIN is prone to suffer from the state explosion problem because
the base model of model checking of McSPIN is very relaxed in or-
der to support a wide range of relaxed memory consistency models.
More specifically, the optimization approaches consist of enhanc-
ing guards (Sec. 3.1), disabling speculations (Sec. 3.2), prefetch-
ing instructions (Sec. 3.3), and removing the global time counter
(Sec. 3.4). This paper also showed the effectiveness of the proposed
optimization approaches by showing the experimental results with
the optimized McSPIN.

One direction for future work is to apply predicate abstraction and
CEGAR approaches to McSPIN (as in [24, 2, 3]) in order to fur-
ther reduce the number of state transitions during model checking,
which are necessary to verify larger programs.
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