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ABSTRACT
OpenSHMEM is a PGAS library that aims to deliver high
performance while retaining portability. Communication
operations are a major obstacle to scalable parallel perfor-
mance and are highly dependent on the target architecture.
However, to date there has been no work on how to efficiently
support OpenSHMEM running natively on Intel Xeon Phi,
a highly-parallel, power-efficient and widely-used many-core
architecture. Given the importance of communication in
parallel architectures, this paper describes a novel method-
ology for optimizing remote-memory accesses for execution
of OpenSHMEM programs on Intel Xeon Phi processors.

In native mode, we can exploit the Xeon Phi shared memory
and convert OpenSHMEM one-sided communication calls
into local load/store statements using the shmem_ptr rou-
tine. This approach makes it possible for the compiler to
perform essential optimizations for Xeon Phi such as vector-
ization. To the best of our knowledge, this is the first time
the impact of shmem_ptr is analyzed thoroughly on a many-
core system. We show the benefits of this approach on the
PGAS-Microbenchmarks we specifically developed for this
research. Our results exhibit a decrease in latency for one-
sided communication operations by up to 60% and increase
in bandwidth by up to 12x. Moreover, we study different re-
duction algorithms and exploit local load/store to optimize
data transfers in these algorithms for Xeon Phi which per-
mits improvement of up to 22% compared to MVAPICH and
up to 60% compared to Intel MPI. Apart from microbench-
marks, experimental results on NAS IS and SP benchmarks
show that performance gains of up to 20x are possible.
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1. INTRODUCTION
One of the key architectural trends in High Performance
Computing (HPC) is the increasing number of processing
cores on chips. The current generation of the Intel Xeon Phi,
named “Knight’s Corner” (KNC), functions as a many-core
coprocessor on Intel Xeon-processor based systems. The
next generation of Intel Xeon Phi, named “Knight’s Land-
ing” (KNL), is designed to operate as a main CPU rather
than a coprocessor. Considering this technological direc-
tion, it is therefore of key importance to understand how
the Phi architecture may be effectively programmed in the
so-called native mode, where a full program is run directly
on the Phi without host-to-coprocessor interaction. Porting
applications to the Phi architecture is relatively straight-
forward compared to programming with GPGPUs since the
Phi is essentially a modified x86 processor; it can natively
support many of the familiar programming models used on
conventional Intel processors, including MPI and OpenMP.
In contrast, programming with GPGPUs requires an explicit
host-to-accelerator programming paradigm.

Developing applications for Phi-based systems might benefit
from new programming models. For instance, OpenSHMEM
is a library interface standard which follows the Partitioned
Global Address Space (PGAS) paradigm. PGAS program-
ming models are well suited for large-scale, global address
space platforms that provide non-uniform memory accesses.
The PGAS approach offers better scaling properties com-
pared to OpenMP because it supports explicit mechanisms
for controlling data locality. It also provides a shared mem-
ory abstraction which makes it amenable to more aggressive
code optimization compared to message-passing models such
as MPI.

Communication operations are a major obstacle to scalable
parallel performance and are highly dependent on the target
architecture. However, to date there has been no work on
how to efficiently support OpenSHMEM running natively on



Intel Xeon Phi. We describe thus in this paper techniques we
have developed to exploit the memory hierarchy of Xeon Phi
in order to improve performance of OpenSHMEM programs
running in native mode.

Our approach has three main thrusts. First, we use the
function shmem_ptr that returns a pointer to a so-called
symmetric variable, belonging to a different Processing Ele-
ment (PE). Subsequent load/store accesses to this symmet-
ric variable can be performed directly through this pointer,
enabling more opportunities for manual and compiler opti-
mizations, including vectorization and reduction of the num-
ber of memory copies. Note that the MPI based imple-
mentation of OpenSHMEM (OSHMPI) [12] uses the shared
memory windows extensions of MPI-3 and direct load/store
access on the target memory within the same compute node.
However, our OpenSHMEM implementation is built on the
top of GASNet and offers a straightforward and efficient way
of introducing load/store operations.

Second, we show the benefits of the use of shmem_ptr through
the use of PGAS-Microbenchmarks [1], a suite of program
kernels we specifically developed for this research. Beside
the fact that our microbenchmarks permit to assess achiev-
able performance for communication operations in different
PGAS languages/libraries, another difference with the OSU
OpenSHMEM Microbenchmarks [3] which provide latency
tests for single pair PUT and GET, bandwidth tests for
single pair PUT, latency and bandwidth tests for atomics
is that our OpenSHMEM microbenchmarks provide latency
and bandwidth tests for PUT and GET, can provide mea-
surements for multiple communicating pairs, and also pro-
vide an option to test latency and bandwidth for load/stores
using shmem_ptr. Our results exhibit a decrease in latency
for one-sided communication operations by up to 60% and
increase in bandwidth by up to 12x.

Third, we observe performance of OpenSHMEM collective
operations, more specifically reduction calls (such as the rou-
tine shmem_double_sum_to_all), to be generally very poor
when using OpenSHMEM on Intel Xeon Phi. Yet, our ap-
proach provides some improvements here, which suggests
that native mode-based constructs open new perspectives
for enhancing high-level operations as well.

The contributions of this paper are:

• a methodology for enhancing data transfers in Open-
SHMEM programs on Xeon Phi using shmem_ptr in-
stead of SHMEM put/get routines;

• a comparative analysis of common reduction algorithms
implemented using OpenSHMEM put/get and shmem_ptr

to efficiently supporting reductions on Intel Xeon Phi;

• the development of PGAS-Microbenchmarks [1], which
contains a set of microbenchmarks for testing reduc-
tions, latency and bandwidth of communications for
PGAS programming models such as OpenSHMEM and
Coarray Fortran [16]. We also developed the SHMEM
version of the well-known microbenchmark STREAM [15].

• validating our proposed optimization methodology us-
ing PGAS-Microbenchmarks, STREAM and benchmarks

from the NAS Parallel Benchmarks [6]. The experi-
mental results on IS and SP show that performance
improvements of up to 20x are possible.

This paper is organized as follows. We describe the archi-
tecture of Intel Xeon Phi in Section 2. A brief overview of
the implementation of OpenSHMEM is given in Section 3.
Our proposed shmem_ptr optimization with experiments us-
ing PGAS-Microbenchmarks and application on STREAM
are presented in Section 4. We study several reduction al-
gorithms and apply shmem_ptr on them in Section 5. Ex-
perimental results using some of the NAS benchmarks are
shown in Section 6. We survey different approaches which
have targeted Intel Xeon Phi in Section 7. We discuss future
work and conclude in Section 8.

2. INTEL XEON PHI ARCHITECTURE
Intel’s popular Many Integrated Core (MIC) architectures
are marketed under the name of Xeon Phi and they are the
product of their KNC project. With the steady growth in
requirements for the available number of computing cores in
HPC, the popularity of Xeon Phi coprocessors among these
computing-intensive applications has increased tremendously.
GPUs are another example of accelerators that are able to
accomplish such highly computing requirements. However,
using GPUs, all the applications have to be ported to specific
programming paradigms like CUDA, OpenCL, etc. Focus-
ing on more abstract and generic approaches, we are us-
ing Xeon Phi which supports various popular programming
models like MPI and OpenMP and which can also be tar-
geted easily using OpenSHMEM library.

Xeon Phi provides x86 compatibility and runs on a Linux
operating system. Intel Xeon Phi coprocessor consists of up
to sixty-one (61) cores connected by a on-die bidirectional
interconnect. In addition to the cores, there are 8 memory
controllers supporting up to 16 GDDR5 (Graphics Double
Data Rate, version 5) channels delivering up to 5.5 GT/s
and special function devices such as the PCI Express system
interface.

As shown in Fig. 1, each core includes a Core Ring Inter-
face (CRI), interfacing the core and the ring interconnect.
It comprises mainly the L2 cache and a distributed Tag Di-
rectory (TD) that ensures the coherence of this cache. Each
core is connected to a bidirectional ring interconnect through
the Core Ring Interface. The L1 and L2 cache have a data
limit of 32KB and 512KB respectively. The three key as-
pects of Xeon Phi are its support of 512-bit vector instruc-
tions (each core includes a 512 bit-wide vector processor unit
(VPU)), simultaneous multi-threading and in-order execu-
tion, which offers some ways to exploit Instruction Level
Parallelism and introduces some caveats not otherwise en-
countered in other X86-based architectures.

For reasons mentioned before, we will only focus on the na-
tive mode of execution, wherein an application runs exclu-
sively on the Xeon Phi co-processor. The native mode of
Xeon Phi offers some benefits such as minimal code-porting
overhead from existing architectures and not having to deal
with host-to-co-processor data transfer latency (which is at
least 15x slower than Xeon Phi intra-node latency). Al-



though one could achieve modest performance by porting
existing CPU code on Xeon Phi, according to our observa-
tion it requires reasonable optimization effort to exploit its
capabilities fully. Typically, the available memory varies,
but it is within 8GB in the current architecture. As such,
the number of active threads (4× 61 = 244) could saturate
the memory, and being an in-order processor, this could re-
sult in excessive stalls unless memory is prefetched into the
caches. Also, a Xeon Phi core could issue 1 or 2 instruc-
tions per cycle (the cores are typically clocked at 1 GHz),
and only one of them could be a vector instruction such as
division; prefetch instructions such as VPREFETCH1 are not
considered vector instructions. On the other hand, a thread
can only issue vector instructions in every other cycle, which
mandates the use of at least 2 threads/core to fully utilize a
vector unit.

Figure 1: Xeon Phi Microarchitecture

3. OPENSHMEM OVERVIEW
OpenSHMEM [8] is a library interface specification, with
bindings for C, C++, and Fortran, that unifies various spec-
ifications of the SHMEM programming API and adheres to
the PGAS programming model. It is designed with a chief
aim of performance, exploiting support for Remote Direct
Memory Access (RDMA) available in modern network in-
terconnects and thereby allowing for highly efficient data
transfers without incurring the software overhead that comes
with message passing communication.

OpenSHMEM programs follow an SPMD-like execution model,
where all processing elements (PEs) are launched at the be-
ginning of the program; each PE executes the same code and
the number of processes remains unchanged during execu-
tion. OpenSHMEM PEs are initialized when the start_pes

function is called. We present in the following paragraphs
the main features of OpenSHMEM.

3.1 Remote Memory Access
OpenSHMEM supports the PGAS memory model where it
proceeds by one-sided communications to transfer data be-
tween PEs. shmem_put is the function that copies contiguous
data from a local object to a remote object on the destina-
tion PE. shmem_get copies contiguous data from a remote
object on the destination PE to a local object.

3.2 Synchronization
We distinguish both types of synchronization: collective syn-
chronization using for example the primitive shmem_barrier_all,

that blocks until all other PEs issue a call to this particular
statement, and point-to-point synchronization such as the
shmem_wait primitive.

3.3 Collective Communication
One type of collective communications is reduction. It is
implemented using shmem_operator_to_all which performs
a reduction operation where operator can be sum, and, etc.
on symmetric arrays over the active set of PEs. Symmet-
ric arrays are remotely accessible data objects; an object is
symmetric if it has a corresponding object with the same
type, size and offset on all other PEs [5].

3.4 Mutual Exclusion
Mutual exclusion is implemented using locks of type integer.
The shmem_set_lock function is used to test a lock and block
if it is already acquired; the shmem_set_unlock function is
used to release a lock.

4. FROM REMOTE MEMORY ACCESSES
TO LOCAL LOAD/STORE OPERATIONS

This section describes our first contribution, namely how
transforming remote memory accesses (shmem_put/shmem_get)
into local load/store native operations using shmem_ptr can
greatly improve OpenSHMEM performance. We show also
the application of shmem_ptr on the STREAM microbench-
mark.

4.1 Methodology
One of the most desirable features of the shared memory pro-
gramming environment is accessing data via local load / store
operations, which makes programming simpler and more ef-
ficient. This approach makes it possible for the compiler to
analyze and perform essential optimizations for Xeon Phi.
To enable such local load and store operations in Open-
SHMEM, we suggest to employ the shmem_ptr builtin that
returns the address of a data object on a specific PE.

On a shared memory machine, it is beneficial to use it as
opposed to OpenSHMEM communication primitives such
as shmem_put or shmem_get. Apart from saving function call
overhead which is nominal, shmem_ptr could be effectively
employed to enable optimizations.

Our methodology consists of: (1) computing the memory
address of a symmetric variable on a given PE only once
at the beginning of the program and, (2) performing the
translation of communication function calls to simple as-
signments. A simple example that illustrates the use of this
methodology is provided in Figure 2.

shmem_int_put(target ,
source ,m,pe);

int *ptr=(int *) shmem_ptr
(target ,pe);

for (i = 0; i < m; i+=1)
ptr[i] = source[i];

Figure 2: The use of shmem_ptr

This yields significantly better performance in terms of la-
tency as demonstrated in Figure 3. Moreover, Figure 4 and
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Figure 5 show the impact of this methodology on the mem-
ory bandwidth. When the message size is very large (block
size > 16K), the difference in terms of memory bandwidth
between local load/store operations and remote access func-
tions becomes small; this is due to the increasing number of
cache misses. These results are obtained running the PGAS-
Microbenchmarks [1] that are well suited for evaluation per-
formance for both point-to-point operations and reductions
in various PGAS implementations. For n pairs, the number
of running PEs is n×2 on an Intel Xeon Phi in native mode.
Note that the OpenSHMEM reference implementation was
modified to support shmem_ptr.

4.2 Application of shmem_ptr on STREAM
We conducted some basic experiments to understand the
memory bandwidth variations of Intel Xeon Phi and how
compiler options can be used to optimize OpenSHMEM pro-
grams. Since OpenSHMEM deals with moving data across
memories, the STREAM benchmark should give us insights
to tune applications written with OpenSHMEM. Indeed,
STREAM [15] is a simple, synthetic benchmark that is de-
signed to measure sustainable memory bandwidth (in MB/s)
and a corresponding computation rate for four simple vector
kernels (Copy, Scale, Add and Triad).

Since the critical performance factor for OpenSHMEM pro-
grams is data movement between PEs, we employed the
STREAM kernels to evaluate and compare performance for
these operations. As such, we have created an OpenSHMEM
implementation of the STREAM benchmark. Since we want
to explore Intel Xeon Phi in native mode, we have modified
STREAM kernels so that each PE works with a distinct and
fixed-length portion of the input arrays at a time, necessi-
tating an all-to-all reduction after each PE is done with its
current block. The shmem_ptr routine enables us to avoid
the use of OpenSHMEM put/get calls for target PEs on the
same shared memory node, and furthermore opens up op-
portunities for vectorization which we found to be crucial
to attain good performance on Xeon Phi. The periodically
occurring reduction operation is a major performance bottle-
neck, and we observe significantly better bandwidth results
when we replace the default all-to-all reduction in OpenSH-
MEM reference implementation with a flat-tree reduction1

1The root process gathers from all other processes, performs

using shmem_ptr. We have dedicated Section 5 to discussing
these optimizations in detail.

In the OpenSHMEM version of STREAM we have devel-
oped, each PE has its own local arrays, and it is necessary
to perform parallel reductions between PEs to ensure cor-
rectness. Since we are exploring Intel Xeon Phi in native
mode, a reduction operation can be optimized by replac-
ing it with local load/store accesses enabled by the usage
of shmem_ptr. The Intel compiler offers many directives for
vectorization and prefetching into cache which we have em-
ployed and with which we have noticed significant improve-
ments on Intel Xeon Phi. A common obstacle to vector-
ization is data alignment; most of the time the compiler is
unable to determine whether a particular pointer is aligned
to specific byte boundaries which differ from one platform
to another. This necessitates explicit hints to the compiler
to ensure that data structures are indeed aligned so that it
could proceed to vectorize loops. In Figure 6, we observe the
bandwidth of STREAM Copy, Scale, Add and Triad kernels
is approximately increased by 40x when we use an optimized
reduction algorithm with vectorization directives (such as
#pragma vector align), as compared to the original Open-
SHMEM implementation without the use of vectorization.

5. REDUCTIONS: A USE CASE
In this section, we study different reduction algorithms, us-
ing OpenSHMEM. Our ultimate motivation is to use shmem_ptr
to optimize data transfers in these algorithms.

5.1 Reduction Algorithms Implementations
We describe here four algorithms for parallel array reduc-
tion, and describe their performance characteristics using
a performance model for the Xeon Phi architecture. We
chose reduction as a representative collective operation be-
cause of its wide usage in many applications, and the fact
that there is some computation associated with it (not only
communication as in scatter/gather). It is possible for an
architecture like Intel Xeon Phi to utilize vector pipelines to
overlap computation and communication.

In the following, we describe each of these algorithms and
our reasoning for why we considered them for Xeon Phi.
We have looked at both power-of-2 cases and non-power-
of-2 cases for the number of PEs in our evaluations. There
has been significant amount of study on improving collective
performance of MPI, as we describe in Section 7.

We use a simple cost model to estimate the total time taken
by these algorithms based on three parameters: latency α,
bandwidth β, and local computation cost per byte γ. We
denote n the size of arrays and p the number of processes.
This cost model assumes that all processes can send and
receive one message at the same time.

5.1.1 Flat Tree (FT)
The flat tree or linear algorithm uses a single root process
that communicates with the remaining processes for carry-
ing out the all-reduce operation, and it is considered to work
well for arrays of short to medium size. This algorithm is
carried out in two stages. In the first stage, the root process

reduction and scatters to all the processes.
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will gather the data from each of the other processes and
apply the reduction operation on them. In the second stage,
the results are broadcasted back to the other processes. Dif-
ferent strategies may be employed for gathering the data

and then performing the subsequent broadcast, depending
on factors such as array size and total number of processes
involved in the reduction. We consider here the simplest
strategy, where the root process will sequentially read the
source buffers from each of the other processes and compute
the reduced result, and then write the result back to each of
the other processes sequentially.

The time taken in this algorithm is:

TFT = pα+ 2n(p− 1)β + n(p− 1) γ.

5.1.2 Recursive Doubling (RD)
The recursive (distance) doubling algorithm [21] is a tech-
nique that can be applied for a variety of collective algo-
rithms, including all-gather, barrier, and all-reduce. For
cases where the number of processes performing the reduc-
tion is a power of 2, the algorithm completes in lg p steps.
On the first step (s = 0), processes with even rank i will
exchange their initial array values with the process of rank
i+ 1, and then all processes will perform the reduction op-
eration using the received data. On each subsequent step s,
each process i will exchange its updated results with either
process i + 2s if mod(i, 2s+1) < 2s or with process i − 2s

if mod(i, 2s+1) ≥ 2s, and then again perform the reduction
operation with the received data.



When the number of processes is not a power of 2, each
of the first r even ranked processes with rank i (where r

is p − 2blg pc) will send its data to the process with rank
i + 1. These receiving processes will perform the reduction
operation using the received data. We then have a set of
2blg pc processes to carry out the core reduction algorithm
that requires a power of 2 number of participants, namely
the first r processes with odd rank and then the last 2blg pc−
r processes. After the core algorithm is completed among
these processes, they will each contain the final reduction
result. We complete the algorithm by having the first r odd
ranked processes with rank i send their data to processes
with rank i− 1.

The time taken in this algorithm is:

TRD = lg p α+ n lg p β + n lg p γ.

In order to optimize this algorithm for native mode execu-
tion on Xeon Phi, we used the shmem_ptr routine which al-
lows each PE to obtain a direct access to another PE’s sym-
metric data. We also experimented with a “left computes”
strategy, where for each pair of communicating processes the
one with smaller rank (1) updates its local array by applying
the reduction operation and using a direct reference to the
array on its partner, (2) writes the resulting values back to
the partner’s array, and (3) notifies the partner that its ar-
ray has been updated. This strategy allowed us to avoid the
use of an additional receive buffer and memcpy operations for
the data exchanges, and improve performance significantly
for large array sizes.

5.1.3 Bruck (BR)
We have developed a variant of the Bruck all-gather algo-
rithm [7] for reductions, which we will refer to here for sim-
plicity as Bruck. As in the recursive doubling algorithm
described above, the core algorithm described here works
for a power of 2 number of processes, and we deal with the
case where it is not a power of 2 as described above. For
Bruck, on each step s a process with rank i will send its
data to the process with rank mod(2blg pc + i − 2s, 2blg pc).
Upon receipt of this data, the process will perform a reduc-
tion using it. After lg p steps where p is a power of 2, all
p processes performing the reduction will contain the final
result.

The time taken in this algorithm is:

TBR = lg p α+ n lg p β + n lg p γ.

5.1.4 Rabenseifner (RSAG)
We also implemented Rabenseifner’s algorithms [21] in order
to more efficiently carry out reductions on very large array
sizes. As with recursive doubling, the core algorithm works
for a power of 2 number of processes, and when the number
of processes is not a power of 2 it can be handled as de-
scribed in 5.1.2. The algorithm can be implemented in two
phases. In the first phase, the PEs perform a Reduce-Scatter
(RS) operation, using a distance doubling and vector halving
procedure which completes in a blg pc steps. In the second
phase, the PEs perform an All-Gather (AG) operation, us-
ing a distance halving and vector doubling procedure which
can again complete in blg pc steps. While there is a greater

number of messages being communicated in this algorithm
among the PEs over the two phases, because on each step
only a portion of the full array is being exchanged between
the PEs this turns out to be more efficient for reductions on
large array sizes.

The time taken in this algorithm is:

TRSAG = 2 lg p α+ 2 p−1
p
n β + p−1

p
n γ.

For native-mode execution on Xeon Phi, we applied the fol-
lowing optimizations to improve the performance. We first
combined the last step of the reduce-scatter phase with the
first step of the all-gather phase. In effect, the processes
that are paired with each other in the last step of reduce-
scatter can exchange corresponding portions of their array
data and perform the reduction operation using the received
data. Thus, we can think of this algorithm as now divided
into 3 stages: (1) the first blg pc − 1 steps of reduce-scatter,
(2) an exchange and reduction of corresponding array blocks

between PEs which are a distance 2blg pc/2 apart, and (3) the
final blg pc−1 steps of all-gather. We also use shmem_ptr to
avoid having to introduce an additional work buffer and per-
form memcpy operations. Instead, each PE can read directly
from its partner’s array to update its own array using the
reduction operation. Finally, we also applied the “left com-
putes” optimization described in 5.1.2 for the new middle
stage of our algorithm.

5.1.5 Discussion
We implemented the aforementioned reduction algorithms
in OpenSHMEM without using our shmem_ptr optimization
(see next subsection), and tested the performance when run-
ning in native mode on Intel Xeon Phi using the reduction
microbenchmarks in our PGAS-Microbenchmark suite. In
Fig. 7, we found that the flat tree algorithm performed the
worst, as predicted from our cost model. Moreover, we ob-

 10

 100

 1000

 10000

2
0

2
2

2
4

2
6

2
8

2
10

T
im

e
 i
n

 s
e

c
o

n
d

s

Block size (# of integers)

SHMEM FT
SHMEM RD
SHMEM BR

SHMEM RSAG
Intel MPI

MVAPICH2

 100

 1000

 10000

 100000

 1e+06

2
12

2
13

2
14

2
15

2
16

2
17

2
18

2
19

2
20

T
im

e
 i
n

 s
e

c
o

n
d

s

Block size (# of integers)

Figure 7: Performance of different reduction algorithms implemented
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serve significant improvement when using recursive doubling
for small message sizes (up to 4KB). Rabenseifner’s algo-
rithm performs the best for large message sizes compared



to the other existing algorithms. This is due to a lessened
data transfer cost resulting from less congestion on the ring
network of the Phi. However, for small message sizes, MVA-
PICH2 performs the best; this leads to the idea of using
shmem_ptr in our SHMEM implementation of reduction al-
gorithms, which we will be exploring in the next section.

5.2 Application of shmem_ptr on Reduction Al-
gorithms

The use of shmem_ptr serves a dual purpose for running
OpenSHMEM codes more efficiently on Intel Xeon Phi. It
allows us to eliminate the use of some intermediate buffers,
which is important because there is a limited amount of main
memory of typically less than 8 GB. Furthermore, it exposes
more instruction-level parallelism to the compiler, enabling
vectorization opportunities which can take advantage of the
Phi’s 512-bit-wide vector units. Therefore, we have applied
our methodology of using shmem_ptr in our implementation
of the reduction algorithms presented in Section 5.1.

We ran the optimized version of these algorithms on Intel
Xeon Phi using 64 PEs in native mode. The experimental
results are shown for small message sizes in Fig. 8 and for
large message sizes in Fig. 9. We observe that the use of
shmem_ptr improves the execution time of these reduction
operations. Especially, in Fig. 10, the optimized versions of
the recursive doubling and RSAG algorithms perform better
than both Intel MPI’s and MVAPICH2’s default implemen-
tations for small and large message sizes respectively.
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Figure 8: SHMEM reduction algorithm performance using put/get
vs. shmem_ptr using 64 PEs for small data sizes

6. EXPERIMENTAL RESULTS USING IS AND
SP NAS PARALLEL BENCHMARKS ON
INTEL XEON PHI

In this section, we present experimental results for our Open-
SHMEM code optimizations using the NAS parallel bench-
marks IS and SP on Intel Xeon Phi. Our goal here is to
assess whether the two OpenSHMEM optimization tech-
niques introduced above to promote Xeon Phi native mode
(shmem_ptr, reduction) already carry over to more general
benchmarks.
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Figure 9: SHMEM reduction algorithm performance using put/get
vs. shmem_ptr using 64 PEs for large data sizes
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Figure 10: Performance of different reduction algorithms using
shmem_ptr vs. Intel MPI and MVAPICH using 64 PEs on Intel Xeon
Phi

6.1 Experimental Setup
We used the Stampede supercomputing system at Texas Ad-
vanced Computing Center (TACC) [4] for all the experi-
ments presented in this paper. Each Xeon Phi node (61
Xeon Phi SE10P) on Stampede has 61 cores running at
1.1GHz. Each has 8GB GDDR5 of global memory, 32KB
of L1 cache and 512 KB of L2 cache. The Phi processors
run a simplified Linux-based OS on one of the 61 cores. We
used the icc 14.1 compiler and, for comparison, Intel MPI
4.1.0. We used and extended OpenSHMEM v1.0f with SMP
conduit of GASNet. All the codes used in our experiments
were compiled at the -O3 optimization level.

We show here the impact of modifying some of OpenSH-
MEM NAS benchmarks [2] to support shmem_ptr and com-
pare the result with Intel MPI. We then further optimize our
OpenSHMEM version by using the best performing reduc-
tion algorithms, recursive doubling for small message sizes
and Rabenseifner for large message size, and compare this
with the MPI version of IS using Intel MPI. We chose the
benchmarks depending on the importance of reductions or



communications within them in order to better assess the
benefits of our optimizations on real benchmarks. Table 1
summarizes the properties of the NAS benchmarks (we run
them using Class C); we ran these results using Scalasca
profiling tool [11] on the Crill cluster at the University of
Houston which consists of 16 nodes with four 12-core AMD
Opteron processors per node. We used only one 48-core
node to simulate a Xeon Phi. Based on the data shown in
this table, we chose IS and SP to evaluate the shmem_ptr

optimizations, and IS to evaluate the reduction algorithm
optimizations.

Remote OpenSHMEM
Benchmark Reductions % accesses % SLOC version

available in [2]
MG 0.1 19.6 1639

√

BT 0 15.5 2436
√

EP 1.6 0 190
√

SP 0 44.1 2166
√

IS 12.4 11.7 628
√

CG 0 33.2 935 ×
FT 0.8 31.2 1319 ×
DT 0 10 869 ×
LU 0.1 14.8 3509 ×

Table 1: NAS Benchmarks

6.2 Experimental Results Using IS and SP NAS
Benchmarks

Integer Sort (IS) and Scalar Pentadiagonal (SP) are two
of the eleven benchmarks in the NAS Parallel Benchmarks
suite. In this section, we showcase the shmem_ptr optimiza-
tion on IS and SP.

6.2.1 Application of shmem_ptr on IS
Figures 11, 12 and 13 show the results for IS comparing
the original reference implementation of OpenSHMEM, In-
tel MPI, and our optimized OpenSHMEM on Intel Xeon Phi.
We evaluated for Classes A, B and C. We found replacing
remote memory accesses by local load and store operations
is beneficial when the number of PEs is greater than 32 in
this setup. This is consistent with the commonly held notion
that performance using Intel Xeon Phi increases slowly and
is obtained using only a large number of cores. We note an
average improvement of up to 13% using shmem_ptr. More-
over, these figures demonstrate that OpenSHMEM is more
scalable than Intel MPI.

Figure 14 shows the impact of using optimized versions of
the recursive doubling and Rabenseifner reduction algorithms
introduced in Section 5. We compare them with the default
all-to-all reduction algorithm of OpenSHMEM. We notice
an average improvement of 25% compared to the default
implementation. It could be observed that reduction time
drops significantly from 64 to 128 PEs for both RD and
RSAG, because the communication cost is reduced due to
the usage of shmem_ptr. On a large number of PEs, compiler
optimizations such as vectorization, and elimination of ex-
cessive put/get calls are key factors to improve performance
for Xeon Phi.

6.2.2 Application of shmem_ptr on SP
Figures 15, 16 and 17 show the results for SP comparing
the original reference implementation of OpenSHMEM, In-
tel MPI, and our optimized OpenSHMEM on Intel Xeon

Phi. We evaluated for Classes A, B and C. Replacing re-
mote memory accesses by local load/store operations gives
good results, but the benefit is inversely proportional to the
message size; the average improvement is up to 17%. Here,
both optimized OpenSHMEM and Intel MPI are scalable.

7. RELATED WORK
In this section, we survey different existing implementations
of reductions and work that have targeted Intel Xeon Phi
using different programming languages, and compare them
with our approach.

7.1 Reduction
New algorithms for collective operations in MPICH are pre-
sented in [20]. MPICH uses a recursive doubling algorithm
if operations are not commutative and recursive halving for
commutative operations. Also, it switches between different
algorithms depending on the message size; for example, for
long messages (≥ 512KB), it uses a pair-wise exchange al-
gorithm. In our paper, we study the behavior of different
reduction algorithms on Xeon Phi specifically, using Open-
SHMEM. Moreover, we optimize these algorithms for shared
memory using local load and store instructions instead of
OpenSHMEM library calls which permits improvement of
up to 22% compared to MVAPICH for small message sizes
and up to 60% compared to Intel MPI for large message
sizes.

A new implementation of collectives using 1-sided communi-
cation operations is proposed in [22], where two-sided message-
passing operations are replaced by remote memory accesses.
Collective communication operations such as broadcast are
implemented using shared memory buffers and flags. In our
paper, we use a similar approach to implement all-reduce op-
erations for shared memory, but to the best of our knowledge
this is the first work that targets the native mode of Xeon
Phi with efficient optimizations for one-sided communication
and reduction operations using the OpenSHMEM library.

Li et al. [13] investigated optimizations for MPI collectives
over clusters of NUMA nodes. They developed performance
models for collective communication using shared memory
and experimentally validated these models with various im-
plemented collective algorithms. They presented three algo-
rithms: reduce-broadcast, dissemination, and tiled reduce-
broadcast. The reduce-broadcast algorithm uses a standard
binary tree approach for reduction and then broadcast, but
such an approach can suffer from load imbalance. Their dis-
semination algorithm completes the reduction in lgn steps,
and does so by keeping all threads busy. But this algorithm
may suffer from congestion. The tiled reduce-broadcast has
all threads performing a reduction and broadcast on a sec-
tion of the vector being operated on. This is used for intra-
socket reduction, with a tree reduce-broadcast used for inter-
socket reduction. In our paper, we proposed an optimized
version of four reduction algorithms; moreover, we converted
one-sided communication calls into simple load/store oper-
ations inside the Intel Xeon Phi.

7.2 Programming for Xeon Phi
Cramer et al. in [10] presented the overheads and mem-
ory constraints involved in porting various OpenMP appli-
cations onto Xeon Phi under the native as well as symmetric
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parison: store/load using shmem_ptr vs calls to
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Figure 14: IS CLASS C reduction execution time comparison: RD
and RSAG vs. default all-to-all algorithm

modes. Luo et al. [14] have implemented UPC applications
on Xeon Phi in both symmetric and native modes. They
have proposed a new thread-based model for data commu-
nication from Host-to-MIC called the “leader-to-all”. Based
on this proposed model, they discussed the optimal strategy
that can be used for intra-MIC, MIC-to-Host, and Host-to-
MIC separately. Also, the MVAPICH-PRISM [17] frame-
work minimizes the internode communication overheads. How-
ever, in these three works, no specific optimizations for the
native mode were proposed. In our approach, we explore
code optimizations for OpenSHMEM programs running un-
der this mode.

An efficient implementation of intra- and inter-node point-
to-point communications in MVAPICH is proposed for Xeon
Phi in [19]. In our paper, however, we show how one can
remove completely intra-node communication calls and re-
place them by simple load/store operations based on the
address of the remote data, consequentially enabling more
effective compiler optimizations.

A performance model for cache-coherent SMP systems is
developed in [18]. Xeon Phi is used to showcase the ap-

plicability of this model. In our paper, we exploited the
performance model developed in this work; for example, the
fact that the distance between cores is irrelevant to the com-
munication cost informed our decision to not consider this
factor when optimizing our reduction algorithms for Xeon
Phi. The results we get in this paper match with the per-
formance model in the referred work.

8. CONCLUSION
The peak performance of Intel Xeon Phi doubles the theo-
retical peak achievable on Intel Sandy Bridge. However, in
order to realize this benefit, it is critical to carefully consider
the potential parallelization overheads and exploit vectoriza-
tion as much as possible. Moreover, considering optimiza-
tions for programs executing in native mode on Xeon Phi
is of particular interest. Indeed, this can provide insights
on effective optimization strategies for the next generation
of Intel’s Xeon Phi processors, named “Knight’s Landing”,
which is designed to operate as a main CPU rather than a
coprocessor. This paper exploits two levels of optimizations
that are directly related to the communication wall problem
which can inhibit scalable performance on Xeon Phi. Firstly,
replacing function calls of remote memory accesses by local
load and store memory operations makes it possible for the
compiler, besides simplifying memory accesses, to optimize
the code. In particular, it creates more opportunities for the
compiler to automatically vectorize the code, which is cru-
cial when targeting the Xeon Phi. And secondly, developing
efficient reduction algorithms and integrating local load/s-
tore within them significantly enhance the performance of
OpenSHMEM programs.

We plan, as future work, to automate the methodology we
describe in this paper, translating communication calls into
load/store instructions, in the OpenUH [9] compiler to opti-
mize OpenSHMEM programs for Xeon Phi and shared mem-
ory platforms more generally.
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