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Abstract
Inter-processor communication is a critical factor for per-
formance at scale. In order to achieve good performance,
communication overheads should be minimized. The fabric
interface library plays a major role in determining the com-
munication overheads. This is very important for the Parti-
tioned Global Address Space (PGAS) programming models,
as these models have been designed for very low-overhead
remote memory access.

The OpenFabrics Alliance has recently initiated an effort
to revamp fabric communication interface to better suit par-
allel programming models. The new open-source interface is
being called Scalable Fabric Interface (SFI). The chief dis-
tinguishing feature being that the new interfaces are being
co-designed along with the applications that use them, such
as PGAS communication libraries.

In this paper we present an early evaluation of the map-
ping of PGAS libraries by implementing prototypes of the
popular GASNet library and OpenSHMEM over SFI. Our
analysis indicates overheads of mapping to SFI are signif-
icantly lower than to the current OpenFabrics Verbs com-
munication interface. We can reduce the number of instruc-
tions in mapping GASNet to SFI by 82%, Berkeley UPC
over GASNet to SFI by 80%, and OpenSHMEM to SFI by
95% as compared to similar mappings to OpenFabrics Verbs
interface.

1. Introduction
The Partitioned Global Address Space (PGAS) program-
ming model is intended to enable emerging applications with
irregular data structure and communication patterns. PGAS
models provide a shared memory abstraction on distributed
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memory machines in order to boost programmer produc-
tivity. They also provide control of data layout and work
distribution which allows application developers to take ad-
vantage of locality. These features enable very good perfor-
mance and scalability. In order to deliver the desired perfor-
mance and scalability, PGAS programming models require
a light-weight fabric communication interface.

The OpenFabrics Alliance (OFA) provides open-source
software for high-performance networking applications that
demand low latency and high bandwidth. The current fabric
interface offered by the OFA is Verbs. The Verbs interface
originates from the InfiniBand specification, which was orig-
inally envisioned as a generic system I/O interconnect. There
are many significant differences between a generic system
I/O interconnect and a desired architecture that supports
PGAS efficiently, as described in past keynotes [14, 23].
Regardless, various PGAS communication runtimes have
been ported on to Verbs [3, 9]. However, the mapping from
PGAS semantics to Verbs semantics has not been simple
and straightforward due to semantic mismatches and it in-
troduces software overhead as shown in Section 7.2.

As we head into an era of increasing integration between
the processor and the fabric, it is desirable to eliminate as
much software overhead caused by inefficient mappings.
The OFA has created a working group, called the OpenFab-
rics Interfaces Working Group (OFIWG), that aims to define
a fabric interface that has a tight semantic map to various ap-
plications that use it, such as PGAS programming models.
Members of the PGAS communication libraries community
have provided feedback in order to design the new fabric
interfaces to improve the mapping of PGAS features onto
fabric interface features. The new fabric interface is called
Scalable Fabric Interface (SFI), and its implementation is
called libfabric.

In this paper, we present an early evaluation of the map-
ping of PGAS libraries over SFI. Our motivation is to inspect
the mappings to see if desired features are provided, and the
software overhead (in terms of instructions executed) to go
from a PGAS-level operation to a SFI-level operation. An-
other motivation behind this paper is to introduce SFI to the
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wider PGAS community in order to elicit further feedback
and encourage participation of PGAS community members
in the OFIWG.

The rest of the paper is organized as follows. In Sec-
tion 2, we further discuss the motivation for SFI based on
the semantic match requirements of PGAS. In Section 3, we
provide a brief introduction to various PGAS models that
we used in this paper. Section 4 discusses related work on
communication interfaces used by the PGAS community. In
Section 5, we introduce SFI features in further detail and de-
scribe PGAS mappings in detail. Section 6 illustrates a pro-
totype implementation of PGAS models over SFI. Experi-
mental results are presented in Section 7. We summarize the
conclusions of the paper in Section 8, and provide acknowl-
edgments to OFIWG members in Section 9.

2. Motivation
In this paper we demonstrate the tight semantic match be-
tween PGAS requirements and SFI. A couple of questions
arise naturally:

- Why does a good semantic match of PGAS libraries to
fabric interface matter?

- Is there a benefit to providing a good semantic match
if the software overhead is simply moved from a PGAS
library into the fabric library?

Benefits of semantic match A good semantic match eases
the tasks of developing, maintaining and providing good per-
formance on a fabric. Any mismatches lead to the possibil-
ity of sub-optimal mapping on the fabric. For example, there
are multiple GASNet implementations over InfiniBand with
different performance characteristics [18]. This results in du-
plicated optimization efforts in multiple stacks.

As the OpenFabrics ecosystem has matured and features
added (shared receive queues, eXtended Reliable Connec-
tions, etc.), the PGAS libraries have had to change signifi-
cantly. Another added benefit of a good semantic match is
that it provides a flexibility to update the fabric hardware
with newer features and offloaded functionality while not
causing disruption in the application space.

Reducing software overhead Simply creating a fabric li-
brary that implements desired application functionality is
not sufficient, as it runs the risk of simply moving the soft-
ware overhead from the application to the fabric library. The
OFIWG is therefore carefully considering the interfaces it
exposes. The included interfaces are either already imple-
mented in hardware or are generally considered as desirable
in hardware implementations.

Further, there are real-life situations where a fabric ven-
dor can optimize desired functionality when a high-level se-
mantic is exposed by taking full advantage of proprietary
and platform specific features. It could be prohibitively ex-
pensive to customize each PGAS library for a set of hard-

ware and platform specific environments to get the maxi-
mum possible benefits. In [25], Shainer et. al. demonstrate
the benefits of this approach in the context of SHMEM and
Mellanox Messaging Accelerator (MXM). The OFIWG in-
tends to extend the benefits of such an approach to an openly
developed and open-source community.

3. Background
Partitioned Global Address Space (PGAS) programming
model provides a shared memory abstraction on distributed
memory machines. The prominent PGAS languages include:
Unified Parallel C (UPC) [26], Titanium [27], Co-Array
Fortran (CAF) [21], X10 [12], Chapel [10], SHMEM [6],
HPF [20], and Global Array (GA) [16]. Our work focuses
on SHMEM, and GASNet.

OpenSHMEM: SHMEM (Shared Memory) [6] is a
library-based PGAS programming model, which exposes
a globally shared memory space for Processing Elements
(PEs) to create symmetric objects and perform one-sided
communication operations on them. There have been several
SHMEM implementations that are specific to different com-
modity platforms from Cray, SGI, Quadrics, IBM [8], and
Mellanox [25]. These platform-specific implementations are
not portable due to minor variations in semantics and APIs.

OpenSHMEM [11] is an effort to bring a variety of
SHMEM and SHMEM-like implementations into one stan-
dard specification. GSHMEM [28] is a portable OpenSH-
MEM implementation over GASNet communication mid-
dleware based on OpenSHMEM v1.0 specification. The ref-
erence implementation of OpenSHMEM [4] is built over
GASNet. Though GASNet supports a huge range of fabric
networks, it doesn’t have direct atomic or collective APIs.
Barrett et al. have proposed OpenSHMEM over Portals4
API [7], which has many of the scalability and performance
features that were adopted by the OFIWG in the SFI defini-
tion.

GASNet: Global Address Space Networking [15] is an
important communication runtime for many PGAS lan-
guages. Currently, several PGAS languages such as Berke-
ley UPC, Co-Array Fortran, SHMEM, Cray Chapel, and
Titanium, have implementations over GASNet. It uses “con-
duit” system to implement portability, which allows differ-
ent hardware vendors to provide hardware-specific conduits.
The current version of GASNet includes support for Infini-
Band, Cray XT Portals, Cray Gemini and Aries, IBM Blue-
Gene/Q PAMI, UDP, MPI, Myrinet, and Quadrics. In this
paper, we present a GASNet conduit for SFI.

4. Related Work
In this Section we discuss related work in this domain. This
topic has been an active area of research. In the interest of
brevity, we focus on a few relevant fabric APIs that are used
for implementing high-performance PGAS.
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4.1 OpenFabrics Verbs
The Verbs interface in the OpenFabrics Enterprise Distribu-
tion (OFED) is derived from the InfiniBand specification. In-
finiBand was conceived of as a generic system I/O intercon-
nect. It derived channel and Remote Direct Memory Access
(RDMA) semantics from the Virtual Interface Architecture
(VIA). There are several aspects of the Verbs interface that
are not semantically aligned with PGAS models. These se-
mantic gaps cause PGAS library implementations to come
up with mechanisms to bridge the gaps. This results in soft-
ware overhead as code must be executed by the CPU before
issuing a fabric-level operation. Some of the semantic mis-
matches are described below.

1. Connection-oriented model: High-performance data
paths through the OpenFabrics Verbs stack require a con-
nection oriented model. In general, the memory footprint
imposed by connection-oriented model is O(n2), where
n is the number of processes in the job. There are some
mechanisms to reduce the connection requirements, such
as eXtended Reliable Connection (XRC), that enable an
asymmetric connection mode where a sender does not
need a connection to every process on a particular desti-
nation node. Neither of these modes map well to PGAS
since PGAS models allow adhoc, any-to-any communi-
cation. Keeping track of connections and optimization
such as on-demand connections only add to extra soft-
ware overhead since such bookkeeping must be consulted
every time an application issues a Put or Get operation.
Recently Dynamic Connected Transport (DCT) has been
proposed that reduces the number of connections even
further. It is available in the Mellanox OpenFabrics dis-
tribution as a Verbs experimental API. DCT requires that
a remote dynamic connection number be provided in the
send operation. Software has to translate destination PE
rank (SHMEM parlance) to a dynamic connection num-
ber. Barrett, et. al. have demonstrated that a memory
lookup in the critical path can cause significant degra-
dation for random patterns of communication [7]. This
is due to the fact that the address table is usually very
large since it needs to store O(n) addresses. Communi-
cation with a random PE causes a lookup in a random
section of the address table, leading to a cache miss. We
note that communication with random PEs is a common
occurrence in PGAS applications, as PGAS is designed
to support irregular applications with fine-grain commu-
nication (small messages). The fabric communication is
therefore stalled until the cache miss is satisfied. PGAS
models really require a reliable connection-less and log-
ically addressed transport. In Section 5, we describe the
logical addressing support in SFI.

2. Unreliable Datagram: InfiniBand Verbs provide a
connection-less model that enables unreliable datagrams.
While the connection-less model is beneficial for scal-

ability purposes, it suffers from performance issues. It
only supports messages of one MTU (Maximum Trans-
mission Unit, typically 4KB), and is unreliable. There-
fore, without zero-copy assistance, software has to im-
plement fragmentation, re-assembly and re-transmission.
This results in very significant performance penalties,
and therefore not appropriate for use in implementa-
tion of PGAS models. In Section 5, we describe the
Reliable Datagram Messages model in SFI that enables
fast, connection-less transport protocols, and enable zero-
copy transfers.

3. Memory registration and Keys: Memory registration is
required in InfiniBand for all buffers that are used in com-
munication operations. It usually implies two different
operations: (a) pinning of pages in memory, and (b) trans-
lating virtual addresses into physical addresses. This is a
mismatch for global address-space models that only re-
quire communication from virtual addresses. PGAS run-
times have to adapt to bridge this mismatch. Bell and
Bonachea show such a mapping in [9] for GASNet. It is
to be noted that the software overheads (such as checking
the cache, and managing keys) remain even though a ma-
jority of HPC applications fit their workloads in physical
memory. Recently, on-demand paging has been proposed
as an extension to the Verbs API. Using this feature, the
entire virtual address range can be registered once (even
though pages are not allocated). This definitely improves
the mapping to PGAS, although it is still not ideal. Every
process has a different memory region object with poten-
tially a different remote access key, which is necessary
for the remote processes to access these memory regions.
Therefore, remote keys need to be exchanged between
processes before any remote memory access can occur.
These keys need to be looked up when initiating commu-
nication with a remote process from the relatively large
array. As mentioned earlier in this section, this could re-
sult in a cache miss for certain communication patterns
that stalls the fabric operation until it is satisfied.

4.2 OSU MVAPICH2-X
There is increasing interest in a hybrid programming model,
such as MPI+PGAS for Exascale computing. MVAPICH2-
X [3] provides such a unified high-performance runtime for
hybrid programming, that is customized for InfiniBand clus-
ters. It currently supports UPC and OpenSHMEM program-
ming models. The unified runtime also offers other benefits
like reduced resource consumption due to sharing of all net-
work related resources. Currently, MVAPICH2-X is a binary
only release.

MVAPICH2-X utilizes OpenFabrics Verbs in a high-
performance and scalable manner. It faces the challenges
described in the previous section 4.1 in order to map PGAS
semantics to Verbs. In this paper, we measure the software
overhead in MVAPICH2-X caused by this mapping. Since
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MVAPICH2-X is available only in binary form, we cannot
provide source-code level analysis. We measure software
overhead using dynamic binary instrumentation tools that
allow us to generate an instruction trace.

4.3 Mellanox ScalableSHMEM and MXM
ScalableSHMEM and MXM have been co-designed to over-
come scalability issues to improve efficiency. Shainer, et. al.
present the co-design of communication libraries with the
underlying hardware interconnect solution approach in [25].
The authors were able to demonstrate a 50x improvement in
performance and scalability by adopting this approach. We
agree with the authors that there is much performance lost
in the current OpenFabrics Verbs and its mismatch with the
PGAS communication requirements. We listed some of the
mismatches previously in this section 4.1. Therefore, such a
co-design approach shows enormous benefits.

The MXM communication interface and ScalableSH-
MEM are Mellanox proprietary and closed-source (binary
only releases). Mellanox is a current member of the Open-
Fabrics Interfaces Working Group (OFIWG) that is develop-
ing SFI.

4.4 Sandia Portals4
The Sandia Portals interface, has been used in this domain
since the early 90s. Portals allowed the user to describe ac-
tions that need to occur on memory segments. The under-
lying kernel or hardware would be able to place incoming
data directly. Users could build communication middleware
using the Portals data-structures as building blocks. Many
PGAS runtimes have been ported to use Portals, such as
GASNet [7, 13].

Portals4 [5] adds light-weight non-matching interface to
boost PGAS messaging rates. Additionally, it introduces log-
ical rank-based addressing to simplify code paths and elim-
inate cache misses. Members of the Portals team from the
Sandia National Laboratories are also participating in the
OFIWG effort to craft the SFI interface.

4.5 Cray uGNI/DMAPP
The user Generic Network Interface (uGNI) is an API
from Cray Inc. released along with the Gemini network.
It is useful for implementing MPI on the Cray XE sys-
tem. The Distributed Shared Memory Application (DMAPP)
API is specifically designed for PGAS applications. The
DMAPP API exposes very low level operations well suited
for SHMEM. The design point of uGNI is to simply expose
the communication capabilities of the Gemini router ASIC.
As such, this results in a low level interface that does not aim
to be a high-level semantic match to MPI, although allowing
an efficient implementation of MPI on it.

The uGNI API provides logical endpoints to improve
MPI scalability. The Node Translation Table (NTT) allows
upper-level software to specify the group size, job id, pro-
tection tag and other unique identifiers. The API does not

require upper-level software to enumerate all possible end
point ids. The logical endpoints can be bound to remote end-
points via NTT index.

The GNI/DMAPP are proprietary Cray APIs that are
available on Cray systems. Cray is actively participating and
Paul Grun (Cray) is the co-chair of the OFIWG effort.

4.6 IBM PAMI and APGAS Runtime
The IBM Parallel Active Messaging Interface is a common
messaging interface for all IBM HPC platforms. It is also
extensible to other networks, such as InfiniBand. It supports
a broad range of programming models, such as SHMEM,
MPI, etc. and applications can also directly use PAMI. The
Asynchronous Partitioned Global Address Space (APGAS)
Runtime [17] is a library that is specifically used by PGAS
languages such as UPC, X10 and CAF in the IBM environ-
ment. PAMI focuses on latency, throughput optimization and
provides the flexibility to the application to apply threads
to communication contexts, thereby maximizing the paral-
lelism inside the communication library. Experience with
PAMI is extremely relevant to SFI, as it has revealed the ben-
efits of a communication runtime that can support multiple
programming models in a high-performance manner.

PAMI and APGAS are proprietary to IBM and were
developed internally. PAMI is available as open-source,
and is typically deployed on IBM systems. IBM is also
participating in the OFIWG effort, which has an open-
design/development and open-source approach.

5. Scalable Fabric Interface (SFI)
In previous sections, we discussed the issues mapping PGAS
to current OpenFabrics Verbs. In this section, we summarize
the important features of the Scalable Fabric Interface (SFI).
We highlight the features that mitigate these semantic mis-
matches. The main goal of SFI is to provide a high-level se-
mantic match for different requirements of applications with
minimal software overhead, while providing portability. The
instantiation of the SFI in a software library is called libfab-
ric, the source code of which may be obtained from [2].

The implementation of SFI (i.e. libfabric), consists of two
distinct parts:

1. A set of fabric providers that implement the communica-
tion interfaces for a particular fabric hardware.

2. A general purpose framework that provides a plugin-like
capability for providers.

The general usage flow is as follows. Fabric providers that
implement functionality register with the SFI framework for
discovery. They advertise the features and capabilities they
offer. The application (in this case the PGAS communication
runtime), specifies the features and operations it desires from
the fabric library. The framework then searches for matching
providers, and if found, delivers the matching provider in-
formation to the application. If there are multiple providers,
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they may be presented in rank order, where the rank order is
determined by the system administrator when installing SFI.
The application then uses this information to allocate fabric
objects such as endpoints, etc. Alternatively, the application
can also instruct the framework to open a specific provider.

The framework component and communication opera-
tions are co-designed in a way that they are cohesive and
not simply a union of all the fabric interfaces available to-
day. The framework is designed to be extensible for new pro-
gramming models, hardware and networking capabilities.

5.1 SFI Architecture
SFI follows an object-oriented model and the various ob-
jects used in communication operations are related to each
other. In this section, we provide a brief description of the
SFI architecture. Readers are encouraged to refer to the pro-
gramming manuals, or man pages that are available with the
SFI distribution [2].

The SFI architecture is shown in Figure 1. The interfaces
are grouped by types - interface control and communication
operations. The interface control operations are used to con-
trol the fabric interface which typically refers to a physical
or virtual NIC. The communication operations represent the
style and semantics of the communication that are desired
by the application.

Figure 1. Architectural View of Scalable Fabric Interface
Framework

Domains A domain defines the boundary for associating
different resources together. Fabric resources belonging to
the same domain may share resources. A domain typically
refers to a physical or virtual NIC or hardware port; however,
a domain may span across multiple hardware components
for fail-over or data striping purposes.

Endpoints An endpoint is a transport level communication
portal. Endpoints are associated with access domains and
can perform data transfers. Endpoints may be connection-
oriented or connection-less, and may provide data reliabil-
ity. PGAS models map very well to the reliable datagram
messages (RDM) type endpoint. This type of endpoint does

not require O(n) memory and facilitates adhoc any-to-any
communication model.

Memory Region Registered memory regions associate
memory buffers with permissions granted for access by fab-
ric resources. A memory buffer must be registered with a
resource domain before it can be used as the target of a
remote RMA or atomic data transfer. It is also possible to
register any range of addresses in the virtual address space,
whether or not those addresses are backed by physical pages
or have been allocated to the application. This facilitates
communication using virtual addresses. Memory regions in
SFI also allow the application to specify the key they want
to associate with the region. This implies that processes in
a job decide on a key a priori and assign it to the memory
region. Since the key is known on all processes, there is no
requirement to exchange the keys, thus saving O(n) storage.
Further, SFI enables offset-based addressing (by matching
on keys associated with the region). Offset-based addressing
greatly simplifies and enhances scalability for distributed
arrays. The origin process does not need to store the base
address of the start of the region at the target. Rather sim-
ply specifying a key associated with the distributed mem-
ory region and the offset is sufficient. This is in contrast
with OpenFabrics Verbs that do not allow the application to
choose a key for a memory region, and having to track the
base address at each target process.

Address Vectors Addresses are required for communica-
tion between endpoints. For high-performance, addresses
must be resolved such that route specific information, such
as Service Levels, Path MTU etc. are known before the send
or write calls. Therefore, every remote address represents
some local object that must be managed on the initiator. At
scale, management of these address tables is critical as this
is an O(n) structure. For example, the address table may be
shared within a node, or even managed by hardware. It may
be desired that the addresses are simply referred by their in-
dex, as opposed to the entire address. SFI Address vectors
provide these functions.

Event Queues and Counters Event Queues and Counters
interfaces allow the applications to check or wait until the
completions of asynchronous operations. Event queues are
used for obtaining complete information for a communica-
tion operation when it completes. SFI separates error events
into a separate event queue thereby simplifying the path to
handle successful completions. The error event queue only
needs to be polled when an error is encountered. Counters,
on the other hand are useful for obtaining aggregate informa-
tion on completions. Counters provide a light weight com-
pletion event that uses a small fixed amount of memory to
provide simple tracking of outstanding communication re-
quests. This optimization is desirable for PGAS libraries.

Tagged Messaging This allows communication operations
to carry a tag, that is matched on the receiving end to choose
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the particular receive buffer in which data is delivered. This
is intended to be used primarily by MPI.

Message Queue This allows simple messaging operations
without any tag. This is similar to the channel semantics of-
fered by OpenFabrics Verbs. The message queue semantics
combined with the Reliable Datagram Messages type end-
point offer very scalable any-to-any messaging. The mes-
sage queue model is useful for Active messaging, as pro-
vided by GASNet.

Remote Memory Access (RMA) RMA operations are used
to transfer data directly between a local data buffer and a re-
mote data buffer. RMA transfers occur on a byte-level granu-
larity, and no message boundaries are maintained. The RMA
operations are primarily designed to suit PGAS program-
ming models.

Atomic Operations Atomic transfers are used to read and
update data located in remote memory regions in an atomic
fashion. SFI defines a wide variety of atomics, as compared
to OpenFabrics Verbs that defines only 64-bit wide atom-
ics. Datatypes and operations supported by SFI atomics are
listed as follow:

• Datatypes: int8, uint8, int16, uint16, int32, uint32, int64,
uint64, float, double, float complex, double complex,
long double, long double complex

• Operations: minimum, maximum, sum, product, logical
OR, logical AND, bit wise OR, bit wise AND, logical
XOR, bit wise XOR, read, write, compare and swap,
compare and swap not equals, compare and swap less
than or equal, compare and swap less than, compare and
swap greater or equal, compare and swap greater than,
and bit wise masked swap

5.2 Mapping PGAS over SFI
A list of PGAS requirements was created and presented at
the OFIWG by Howard Pritchard after consultation with
many members of the PGAS community. The original pre-
sentation can be found at [24], and a complete list of the
requirements brought forth by the community is available
from [1]. In this section, we present a review of the PGAS
requirements and how they are mapped onto SFI. This is a
list of high-level requirements from several PGAS model-
s/libraries. Table 1 summarizes some of the critical require-
ments and SFI mappings.

Previously, in this section we have described the scalabil-
ity features for reliable connection-less endpoints, rank enu-
merated addresses, memory registration and atomic opera-
tions. We provide some details about the remaining aspects
that are described in Table 1.

Remote completion Remote (or global) completions are
very important for PGAS models for implementing strict or
relaxed memory models. At certain points, the compiler/li-
brary needs strong guarantees that any writes have indeed

been reflected in target memory. For the sake of efficiency,
it is highly desired that this synchronization overhead be
as small as possible and not require further CPU involve-
ment at target. Additionally, various networks may imple-
ment this in a different manner and leverage internal hard-
ware acknowledgments. The PGAS libraries desire a clean
method by which this semantic requirement is expressed.

In SFI, completions can be observed either through an
event queue, or a counter. SFI offers various properties at
the endpoint-level to specify what a completion means. By
default, a completion implies that the operation completed
locally - i.e. the initiator is free to release resources asso-
ciated with the operation. In addition, SFI provides a flag
FI REMOTE COMPLETE, that can be used to configure an
endpoint. When this flag is configured at both initiator and
target endpoints it indicates that a completion should not be
generated until the operation is complete at the target.

Local buffer reuse OpenSHMEM exposes blocking write
operations that allow the reuse of the send buffer when
the call returns. Since these operations are used for very
small messages, it is important that there be a low overhead
mechanism by which small messages are injected into the
network and buffer can be reused. SFI provides a direct
mapping to this requirement by the fi inject function.

Ordering semantics PGAS models offer a wide variety
of ordering semantics - from relaxed to strict consistency.
PGAS libraries and compilers face a tough task in providing
ordering semantics in a portable manner. Every platform
and network has different ordering semantics, and often it
is exposed at a very low level. SFI offers a wide variety of
ordering semantics such that the PGAS compiler or library
can request a particular order from the network (as opposed
to implement it above the network layer). This allows the
SFI provider to expose all optimizations since it is aware of
the order required by the application.

Piggyback data It is often useful to send metadata along
with a message. Such as the data associated with a remote
function invocation and the arguments. Another use case is
providing a pointer to a remote structure that is associated
with the data delivered (say a pointer to a request structure).
SFI exposes up to 64-bits of immediate (or piggybacked)
data that can be sent along with a message.

Minimizing instructions SFI is designed from the ground
up to minimize instructions executed in the critical path. It
intends to fully utilize compiler optimizations that are possi-
ble by inlining methods and inter-procedural optimizations
(IPO). In the current OpenFabrics Verbs, these compiler op-
timizations are not possible. This is due to the fact that
provider functions are called through function pointers, thus
making it very hard, if not impossible for the compiler to
do advanced analysis. SFI defines a direct provider method
(FI DIRECT), that allows a version of libfabric to be in-
stalled that has the provider built in. In this mode, the appli-
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PGAS Requirement SFI Features and Capabilities Description and Impact
Scalable endpoint memory usage Reliable connection-less endpoint O(1) endpoint memory usage and

no lookups
Low overhead endpoint enumera-
tion

Address Vectors Logical addressing of endpoints by
PE/rank

Scalable memory registration Application-specified Remote Keys O(1) storage and no lookups
Sparsely populated memory regions Register entire virtual address range Registrations no longer in critical

path
Remote Completion for Put and Get Remote completion attribute for

endpoint
No communication required to as-
certain whether writes completed at
target

Local buffer reuse for small writes Message injection with immediate
local completion

No polling required to detect local
completion

Flexible ordering semantics Allows app to specify Message
ordering and Data ordering (RAR,
RAW, WAR, WAW, RAS (read-
after-send), WAS, SAR, SAW,
SAS)

Efficient code paths where re-
quired ordering matches fabric or-
dering. Reduction in code com-
plexity where emulation is required
(emulation can be implemented in
the provider)

Rich set of Atomic operations Supports 14 different datatypes and
19 different ops

Enables wide variety of opti-
mization and synchronization
algorithms

Sending metadata along with mes-
sages

Supports provider configurable
amount of metadata to be sent
along with messages

Increased metadata available to ap-
plications. An example: passing tar-
get side pointers (when provider
supports 8B metadata).

Minimize instructions in critical
path

Supports a direct-mode where an
SFI provider can present inline ver-
sions of critical path functions

High messaging rate and lower la-
tency

Table 1. Mapping of PGAS Requirements to Programming Languages

cation links directly with libfabric and the provider, allowing
full use of inlining and IPO. The resulting binary works only
on the target provider - but that is a common usage model in
High Performance Computing (HPC) area, as there is often
only one high-performance fabric installed on the system.

6. Implementations of PGAS Libraries over
SFI

In this section, we examine the implementations SHMEM
and GASNet over SFI.

6.1 SHMEM over SFI
We implement the OpenSHMEM 1.0 standard over SFI. Our
prototype is derived from the SHMEM-Portals implementa-
tion. The design is optimized by using several key features
of SFI. These features include reliable connection-less end-
points, a light-weight counter based completion mechanism,
and very low overhead mappings for communication critical
operations like small Puts.

SHMEM-SFI communication is centered around a single
endpoint assigned to each PE as illustrated in Figure 2.

The endpoint encapsulates the settings and resources for
the desired SHMEM communication scheme. Endpoints are
logically addressed, i.e. address by PE number, via an SFI
address vector table that is bound to the endpoint. We expose
the full address space through our endpoint and directly
use remote virtual addresses in Put/Get calls. We use three
counters for synchronization that are bound to the endpoint.
In addition, a SFI memory region is bound to the endpoint
to count inbound Puts and Gets.

We use the atomic and the RMA APIs on the endpoint.
Synchronization is achieved by using three counters: (a) out-
going writes counter, (b) outgoing reads counter, and (c) in-
coming/remote reads and writes counter. The outgoing write
counter is used to implement shmem quiet semantics. The
outgoing read counter is used to force an internal wait on get,
swap, and fetch. The incoming reads/writes counter is used
to implement the shmem wait until.

Small write messages (such as shmem int p) take ad-
vantage of SFI’s message “inject” feature which ensures lo-
cal buffer availability once the call returns as mentioned in
Section 5.2. This maps to SHMEM put semantics. Reads,
and atomics wait for remote completion regardless of mes-
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sage size. The medium-sized write messages uses a bounce
buffer to enable buffer reuse. The larger messages are frag-
mented and sent directly (not buffered). Both medium and
large messages use a queue to track completion. Once the
queue is full or the non-buffered fragments are in flight, an
internal wait routine for queue completion has to block un-
til the fragment Put is completed. This is to ensure safe send
buffer reuse. All writes, regardless of size, update the counter
since it makes implementation of fence and quiet very sim-
ple.

Figure 2. OpenSHMEM design over SFI: a single endpoint
is used for RMA/Atomics operations, with Event Queue for
block put routines and Counters for other operations.

6.2 GASNet SFI Conduit
GASNet specification defines two groups of APIs: 1) The
Core APIs, which include job control interface, active mes-
saging interface, and atomicity control interface; 2) The Ex-
tended APIs, which include memory-to-memory data trans-
fer functions, register-memory operations, and barriers. In
this section, we explain how to utilize SFI-based conduit
to support GASNet Active Messaging and data transfer
APIs with minimal software overhead. The basic structure
of GASNet SFI conduit is shown in Figure 3.

Figure 3. GASNet over SFI: two endpoints for RMA op-
erations and Active Message based operations, respectively,
with separate Event Queues for completions.

Active Messaging APIs in GASNet handle three cate-
gories of active messages: short, medium, and long. Short
active messages carry only arguments. Medium active mes-
sages include a data payload in addition to the arguments.

Long active messages include a data payload with prede-
termined address on the remote node, in addition to the ar-
guments. In order to handle the Active Messaging commu-
nication requirement from GASNet, we open an SFI End-
point with Message Queue capability (AM Endpoint). As
introduced in Section 5.1, Message Queue is able to de-
liver simple messaging operations without any tag. In order
to receive active messages from any remote PE, the users
need to pre-post buffers on this AM Endpoint. We use the
FI MULTI RECV feature in SFI to implement efficient re-
ceive operations. The multi-receive feature allows the appli-
cation to specify a large area of buffer space once, and the
underlying fabric implementation places incoming data into
this buffer as it arrives. Thereby, saving the application from
the complexity of actively managing the receive buffer. Once
the available buffer space is used up, an special event which
contains information about the consumed buffer is generated
and returned to the users through the Event Queue. New in-
coming messages are received into the next free buffer. If all
the pre-post buffers are consumed before the user can post
any more, incoming data can be dropped. The OFIWG is
currently discussing support for exposing such flow-control
events. This feature is similar in spirit to the persistent match
entry in Portals4. We set the FI MULTI RECV flag when
opening the AM Endpoint. The sending process of active
messages in GASNet SFI conduit varies between differ-
ent categories of the Active Messaging APIs. For short and
medium active messages, we use a temporary buffer to pack
all the arguments and data payload. Then the send buffer are
posted to the AM Endpoint through either fi injectto
or fi sendto APIs, depending on the total size. If the
message is sent through fi injectto, SFI guarantees the
send buffer can be reused after returning from this API. This
is similar as the “inject” feature introduced in Section 6.1.
However if the message is sent out through fi sendto
API, these temporary buffers need to be freed or returned
to send buffer pool depending on different implementations.
Thus we attach an outgoing Event Queue to the AM End-
point. After a local completion is achieved for a send request
with FI EVENT flag, SFI generates a notification event and
enqueue it into the active message Event Queue. This event
contains required information to identify and process the
send buffer. For long active messages, the parameters are
sent through AM Endpoint, while the data payload are sent
through RMA Endpoint, as introduced below.

For the memory-to-memory data transfer functions from
Extended API, we create the second SFI Endpoint, which
is represented as RMA Endpoint in the figure. Virtual ad-
dresses are used for write/read on the RMA Endpoint in
GASNet similar to SHMEM/SFI. The SFI APIs used are:
fi inject writeto, fi writeto, and fi readfrom.
GASNet RMA data transfer APIs include blocking memory-
to-memory transfers and non-blocking memory-to-memory
transfers. GASNet defines two types of asynchronous com-
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munication operations depending on whether they return a
handle or not. The explicit handle operations return a handle
that is used to synchronize the specific operation in flight.
The implicit handle operations do not return a handle, and
the synchronization is accomplished by calling a synchro-
nization routine that synchronizes all outstanding operations.
For blocking RMA operations or non-blocking RMA oper-
ations with explicit handles, GASNet requires a completion
on a certain outgoing communication request. Event Queue
is necessary for such completion requirements. Although the
synchronization functions for implicit-handle non-blocking
RMA operations can wait for a set of outgoing requests,
these functions should only synchronize implicit-handle op-
erations. In order to fulfill the requirements of the GASNet
specification, we utilize Event Queue for RMA Endpoint
as well. This RMA Event Queue should be polled only if
there are outstanding RMA operations exist. By recording
the number of outstanding RMA operations, we can reduce
the overhead in network progress engine by waiting until
those are complete. We are currently exploring the possibil-
ity of utilizing SFI counters in the GASNet design.

7. Results
In this section, we present the results of our evaluation map-
ping PGAS libraries to SFI, including OpenSHMEM, GAS-
Net, and Berkeley UPC over GASNet. As the SFI stack is
still under definition, we think an analysis that focuses on the
impedance match from PGAS to SFI is timely. We measure
the semantic alignment by counting the number of instruc-
tions required to translate a PGAS operation into an SFI op-
eration. It is better to have fewer instructions as it indicates a
tight semantic fit. This provides a good incentive to any SFI
provider to highly optimize the implementation (whether
through hardware or software means) as a way to optimize
the performance of that particular PGAS library. This also
insulates the PGAS layer from excessive code modification
and changes when being ported across multiple vendors and
multiple generations of hardware.

7.1 Experimental Environment
The evaluation is done on two dual socket nodes containing
Intel® Xeon® X5570 Quad-core Nehalem CPUs, running
at 2.93GHz with 12GB of host memory. The nodes are con-
nected by a Mellanox QDR/10GigE ConnectX InfiniBand
HCA (MT26428). The nodes are running Red Hat Linux 6.5,
with kernel version 2.6.32-431.el6.x86 64. The Intel® C++
Composer XE 2013 SP1 (Intel® C++ compiler 14.0) is used
with “-O3 -ipo” flags. GASNet 1.22.4 and MVAPICH2-X
2.0 are utilized for the evaluation. We use a variation of the
Intel® Pin for generating instruction traces for accurate mea-
surement.

In order to focus on the mapping overhead, we choose
to measure the instructions spent only in the fabric com-
munication middleware. Thus as shown in Figure 4, we

measure the instruction counts between the PGAS appli-
cations and the providers for the fabric library APIs (in-
side the dashed line rectangle). As a concrete example
for the SHMEM prototype, we measure the instructions
from shmem int p to SFI function fi injectto. We
compare these instructions with other implementations of
SHMEM over OpenFabrics Verbs by measuring instructions
from shmem int p to Verbs API ibv post send.

Figure 4. Scope for Instruction Count Measurement

7.2 Impact of Software Overhead on Performance
In this section we present data to support our claim that
software overhead has an impact on small message la-
tency and messaging rate. We evaluate the effect of soft-
ware overhead in existing PGAS runtimes based on current
Verbs communication interfaces. We use the MVAPICH2-X
runtime for this experiment. We measure the Cycles per
instruction (CPI) using the Oprofile system profiling tool
available with RedHat distribution. We capture two events,
CPU CLK UNHALTED and INST RETIRED. The ratio gives
us CPI. In order to measure these metrics correctly, we com-
pletely occupy one CPU core, such that the messaging li-
brary code alone executes on the core. Further, to ensure that
the critical path (send operation) instructions are measured,
we repeatedly execute only the send path, by pumping many
messages of size 1B, window size=64 and 1M iterations.

The latency of executing the particular code path on the
CPU core is given by the following formula:

time = INST RETIRED×CPI
CPUCorefrequency

We measure the CPI to be 1.1 on our platform. Figure 5
shows the software overhead in terms of time. We present
analytical model data with different CPU core frequencies
and CPI. We observe that the software overhead is in excess
of 200ns for core frequency of 1GHz - 1.8GHz. Power re-
quired for a CPU is directly related to a frequency. Scaling
frequency to improve software overheads is not a good strat-
egy, since power limitation is the biggest challenge going to
Exascale.This indicates that software overhead is very sig-
nificant factor for next generation Exascale CPU cores.
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Figure 5. Estimated Latency Overhead

7.3 Instruction Count Comparison
7.3.1 OpenSHMEM
We first compare the software overhead of prototype Open-
SHMEM over SFI implementation with two popular Open-
SHMEM implementations: OpenSHMEM reference imple-
mentation over GASNet IB Verbs conduit (GASNet-IBV)
and MVAPICH2-X software package (MV2X). We also in-
clude OpenSHMEM reference implementation over GAS-
Net SFI conduit (GASNet-SFI). We use SFI in the direct
mode, as described in Section 5.2 to enable full compiler
optimizations, such as inlining and IPO. We measure the
instruction counts for two representative OpenSHMEM se-
mantics: shmem int p and shmem quiet.

The results are shown in Figure 6. SHMEM-SFI stands
out as the thinnest implementation for the Put communica-
tion call at 16 instructions. MV2X shows the largest instruc-
tion count (402), followed closely by GASNET-IBV (388).
Both implementations show a significant gap between the
two SFI implementations: GASNet-SFI and SHMEM-SFI.
SHMEM-SFI is able to use fewer instructions compared to
other implementations in shmem int p due to its mem-
ory mapping scheme. SHMEM-SFI exposes the full address
space at initialization, and benefits from an inherently sym-
metric address space across PE’s with minimal cost to the
Put call path. All SHMEM-GASNet implementations have
an added overhead of the segmented address space look-
up for the symmetric heap utilized in the SHMEM-GASNet
mapping. The burden of the segmented addresses look-up is
most noticeable in GASNet-SFI given the smaller number of
overall instructions; it accounts for about 25% of the over-
head. GASNet-SFI shows an additional instruction overhead
when compared to SHMEM-SFI due to its implicit network
progress requirement.

GASNet-IBV and MV2X implementations have further
overheads in their memory mapping scheme that account for
the majority of the instruction count gap between the SFI
implementations. For instance, the GASNet-IBV implemen-
tation dynamically pins address space segments for each Put
call. This accounts for almost 90% of the overhead associ-

ated with the instruction count. MV2X on the other hand
uses registration-cache to look up registrations keys for ad-
dressing which adds a significant overhead in the call path.

We observe a similar trend in Figure 6 for the quiet
routine instruction counts. The two SFI implementations
continue to show smaller instruction counts compared to
GASNet and MV2X implementations. The SHMEM-SFI
implementations instruction path benefits significantly from
avoiding the complicated progress engines which are re-
quired for GASNet and Verbs interfaces. SHMEM-SFI’s
quiet routine is only 11 instructions because it solely re-
lies on a wait for the Put counter. GASNet-SFI on the other
hand has additional overhead from polling an RMA queue.
The instruction gap between GASNet-SFI and MV2X and
GASNet-IBV is from the latter two implementations em-
ploying multiple rounds of polling for the receive and send
progress engine.

Figure 6. Instruction Counts for Different OpenSHMEM
Implementations

7.3.2 GASNet
In Section 7.3.1, we already present the performance of
GASNet SFI conduit in the environment of OpenSHMEM.
In this section, we further present three GASNet operations
which are not being utilized in previous examples, including
gasnet AMRequestShort, gasnet put nbi, and ga
snet wait syncnbi put. gasnet AMRequestShor
t is one of the core APIs for short Active Message opera-
tion. In prototype GASNet SFI conduit, as described in Sec-
tion 6.2, Active Message communication requests are posted
to an AM Endpoint. gasnet AMRequestShort function
maps to fi injectto. Temporary buffer managements
for short message injection are left for each provider to fully
optimize according to the hardware features. Comparing to
IB Verbs conduit, SFI conduit reduces the instruction counts
from 345 to 106, as illustrated by Figure 7.

On the other hand, gasnet put nbi belongs to ex-
tended APIs for memory-to-memory direct access opera-
tions. gasnet put nbi function launches non-blocking
implicit put request while gasnet wait syncnbi put
blocking waits all outstanding non-blocking implicit Put re-
quests. Similar to the evaluation for shmem int p, the in-
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struction counts for RMA Endpoint requests are reduced by
about 300. For synchronization API gasnet wait syncn
bi put, we add a counter for outstanding RMA operations,
in order to save unnecessary polling overhead for RMA
Endpoint. As a result, we are able to reduce the instruction
counts for the wait function from 160 to 56.

Figure 7. Instruction Counts for GASNet Conduit

7.3.3 Berkeley UPC
Berkeley UPC is an open-source implementation of UPC
specification based on GASNet communication runtime [19].
We evaluate the impact of the GASNet SFI conduit in UPC
environment in this section. Figure 8 shows the instruction
counts for a write operation on an int type shared vari-
able on a remote node and the synchronization function
upc fence. The remote shared variable access operation
measured is listed in Pseudocode 1:

Pseudocode 1. Shared Variable Access
shared int x[THREADS]; // global shared array
test () {

int y; // local variable
y = ...;
if(MYTHREAD==0) {

x[1] = y; // instruction counts measured
}

}

For the remote shared variable access operation, the size
of the data is usually equal to an element size such as
sizeof(int), The Berkeley UPC translator translates this ac-
cess into a Put operation, which finally maps to a blocking
memory access function in GASNet: gasnet put bulk.
GASNet IB Verbs conduit invokes a RDMA registration
strategy, which is called firehose [9], in order to get pre-
pared for the small RDMA Put operation. The firehose algo-
rithm is necessary for pinning-based network APIs such as
Verbs. It helps reducing the host-level synchronization over-
head for small Put/Get operations. According to the pro-
filing results, 44% instruction counts are spent in firehose
for remote memory pin-down and local pin-down check.
Other than that, 47% instructions are spent in handling dif-
ferent completion requirement and choosing different Put
algorithm. On the other hand, SFI conduit directly map the

GASNet API gasnet memput bulk with SFI RMA op-
eration fi inject writeto through the RMA Endpoint,
as introduced in Section 6.2. By utilizing Event Queue, SFI
conduit is able to get rid of the overhead in managing com-
pletion mechanism in the communication runtime level. The
completion mechanism is left for the providers or even hard-
ware to optimize. GASNet SFI conduit can reduce the in-
struction counts of IB Verbs conduit by 80% for remote
shared variable access and 50% for upc fence.

Figure 8. Instruction Counts for Berkeley UPC over GAS-
Net Conduit Comparison

8. Conclusions and Future Work
In this paper, we provided an initial evaluation of the map-
ping of PGAS to the Scalable Fabric Interface. Our eval-
uation reveals that SFI is a better semantic fit for PGAS
programming models. We illustrated two prototype imple-
mentations over SFI: OpenSHMEM and GASNet commu-
nication runtime. We evaluated the software overhead of
the three prototype implementations over SFI by calculating
instruction counts between PGAS language semantic APIs
and hardware library, including OpenSHMEM, GASNet,
and Berkeley UPC. Comparing with GASNet IB Verbs con-
duit and MVAPICH2-X, which are designed for the current
OpenFabrics Verbs communication interface, prototypes
over SFI can significantly reduce the instruction counts in
critical path. GASNet SFI conduit can achieve 69% to 82%
fewer instruction counts for RMA communication requests
and 50% to 65% fewer instruction counts for synchroniza-
tion operations. Furthermore, the SHMEM-SFI prototype
can achieve more than 95% reduction in the critical path
instructions. From the evaluation results, we can observe
that SFI has the potential to solve the software overhead
bottleneck in the future Exascale systems while satisfying
requirements from different PGAS programming models.
We would also like to notify the readers that, all the soft-
ware overhead measurements in this paper are preliminary.
The overhead contribution of the transport layer are omit-
ted, which can be highly optimized by different providers
through either hardware or software means.

In the future, we will continue refining the PGAS proto-
types and engage the open-source community. We are also
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evaluating the mapping of Co-Array Fortran to SFI. We ex-
pect that as SFI continues to develop, providers that map
SFI to fabric hardware will develop and mature. When ma-
ture providers are available, we will be able to perform a
full-stack analysis.
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