
Multi-Threaded OpenSHMEM: A Bad Idea?
Gabriele Jost
Intel Corporation

3600 Juliette Lane
Santa Clara, CA 95054, United States

+1 408 653 9264

Gabriele.Jost@intel.com

Ulf R. Hanebutte
Intel Corporation

705 5th Ave S Suite 500
Seattle, WA 98104, United States

+1 206 701 8745

Ulf.R.Hanebutte@intel.com

James Dinan
Intel Corporation
75 Reed Road

Hudson, MA 1749, United States
+1 978 553 1216

James.Dinan@intel.com

ABSTRACT

The purpose of this document is to stimulate discussions on

support for multi-threaded execution in OpenSHMEM. Why is

there a need for any thread support at all for an API that follows a

shared global address space paradigm? In our ongoing work, we

investigate opportunities and challenges introduced through

multi-threading, namely implementation challenges and

opportunities and required – as well desirable – extensions to the

API.

Categories and Subject Descriptors

D.3.3 [Programming Languages]: Language Constructs and

Features – Concurrent programming structures, Patterns,

Frameworks

General Terms

Algorithms, Performance, Languages.

Keywords

OpenSHMEM, threading, hybrid programming.

1. MOTIVATION
Current large-scale HPC systems are typically clusters of multi-

core nodes. The trend in hardware architectures suggests that the

number of cores per node will continue to increase while memory

per core decreases. To take advantage of these cores, the number

of threads and processes executed per node will also increase.

However, processes with separate virtual address spaces partition

the node memory, resulting in memory pressure. Hybrid parallel

programming with processes and threads is a popular remedy to

this problem, because it extends existing process-based parallel

programming libraries with intranode data sharing [3].

The OpenSHMEM parallel programming model follows the

partitioned global address space (PGAS) paradigm, a model that

is well suited for platforms with non-uniform memory access

latencies. The OpenSHMEM specification also provides support

for direct load/store memory access within a node, which

alleviates the need to use threads for this purpose.

Why should we introduce threads to OpenSHMEM if inter-PE

shared memory can be already exploited directly through the

OpenSHMEM interface? Doesn’t this just introduce overhead

through e.g. forking, joining and other thread management issues?

Hybrid programming with threads also introduces extra

application development effort and program complexity.

Nevertheless, lessons learned from other programming models

indicate that there might be other benefits provided by a hybrid

approach.

We discuss some preliminary observations regarding the

OpenSHMEM model and challenges when programming for SMP

node clusters in Section II. In Section III we give examples for

opportunities using a hybrid approach and in Section IV we

discuss some ideas on necessary support within OpenSHMEM. In

Section V we summarize the status of our current ongoing work

and outline future work. Through this work, we aim to stimulate

discussion between application developers, the OpenSHMEM

specification committee, and OpenSHMEM implementers to

determine requirements to extend OpenSHMEM for future

extreme-scale environments.

2. SHMEM ON SMP NODE CLUSTERS

2.1 Preliminary Observations
OpenSHMEM is a library API that provides a single program

multiple data (SPMD) execution, in which participating processes

(the places where work occurs are called Processing Elements or

PEs) view each other’s data through a partitioned global address

space (PGAS). Note that in a multi-threaded environment, the PE

corresponds to the process, not the thread. The OpenSHMEM

model defines two shared, symmetric memory segments: data and

heap segments. The data segment contains statically declared

shared objects, and the heap contains dynamically allocated

shared objects.

Symmetric objects are accessed using a PE’s local pointer to the

given symmetric object, and the desired target PE. When running

within the same SMP node, shared data segments of peer PEs can

be mapped into the address space of a given PE. Support for this

is provided through the shmem_ptr function, which queries the

local pointer for another PE’s instance of a symmetric object.

2.2 Performance Challenges on SMP Node

Clusters
HPC systems have become increasingly “non-isotropic” at the

node level with a rich hierarchy of shared caches, ccNUMA

domains, multiple sockets and a large number of cores.

Applications also expose hierarchies in their parallel

decomposition. Such hierarchies are introduced, e.g. by domain

decomposition and intra-domain solver routines. Mapping the

application sub-domains onto the hardware hierarchy is a

challenging problem. For high overall application performance,

one must address both communication and computational

performance.

Communication performance is impacted by multicore and

multisocket anistotropy effects, such as differences in inter-node

vs intra-node communication, communication patterns of the

application, bandwidth bottlenecks, and impact of shared caches.

Placing multiple processes on a node will often yield unnecessary

calls to the communication library. A small number of PEs per

node may not be able to saturate the network bandwidth and may

waste compute resources.

Computational performance is impacted by factors like ccNUMA

locality effects, penalties for access across NUMA domain

boundaries, messaging pattern and resource requirements.

When employing multiple threads per process, it is often difficult

to determine the right balance of processes and threads per node

to achieve the best core performance and memory bandwidth. To

highlight this with an anecdotal data point, we run the

OpenSHMEM NAS Parallel Benchmark (NPB) Scalar Penta-

diagonal solver (SP) implementation developed at the University

of Houston [11] on a Cray XC30 (16 cores per node + hyper-

threading). We used the Cray compiler Version 8.2.5 and Cray

SHMEM 6.3.0. We have gathered some execution characteristics

that are shown in Figure 1. The goal was not an in-depth analysis

of the algorithms nor a performance assessment of the Cray

system. We ran two experiments, employing 4 and 16 PES per

node. We have normalized the values to a range of 0 to 1 in order

to observe how they vary with respect to each other. Increasing

the number of PES will result in more, yet shorter messages. The

memory requirements increase with growing number of PEs. Most

notable is the difference in Mops between 16 and 4 PEs per node.

It points to the fact that packing all cores with processes may not

always be the most efficient way to execute or may not be

possible due to memory limitations. However, reducing the

number of PEs leaves a quarter of the cores idle. While this

example is rather trivial, we have noted similar effects in real-

world cases [5].

Figure 1. Characteristics of OpenSHMEM NPB SP.

An efficient OpenSHMEM implementation can avoid unnecessary

communication calls within a node. This is demonstrated in the

optimized OpenSHMEM implementation by [7] and by OSHMPI

[4], an OpenSHMEM implementation based on MPI. It will, for

example, not issue calls to MPI_Put within a node but rather use

direct load/store provided by MPI-3. Similarly, an OpenSHMEM

implementation could address some of the ccNUMA aspects with

respect to avoiding inter-domain contention through efficient

placement of symmetric data and communication buffers.

So, is hybrid OpenSHMEM+Threads indeed bad idea? In the next

section we will look into how hybrid programming could improve

application performance.

3. OPPORTUNTIES AND BENEFITS OF

HYBRID PROGRAMMING
Applications that utilize a hybrid execution model can be

categorized as shown in Figure 2.

The “master-only” (PE only) mode typically has calls to the

communication API only outside of multithreaded regions. This

requires the lowest level of thread-safety in which only a master

thread issues communication calls. Compute threads typically

sleep during communication calls and it may be hard to sustain

full communication bandwidth with just a single process per node.

A higher level of thread safety is required if calls to the

communication API occur within parallel regions. Executing in

this mode provides the opportunity to overlap communication and

computation by assigning a subset of threads to communication

and the rest to computation. It also enables pipelined thread

execution across multiple processes and facilitates the

implementation of wave-front methods.

Figure 2. Hybrid Communication API Usage Models.

Most hybrid programming today is based on employing two-sided

MPI communication and OpenMP for multithreading. Users have

observed considerable benefits when exploiting multi-level

parallelism based on domain composition [3].

Certain classes of applications can benefit by employing the

master-only mode. Examples for this are the multi-zone versions

of the NAS Parallel Benchmarks [12]. These benchmarks capture

the behavior of applications from the field of Computational Fluid

Dynamics. Complex structural domains are covered by a fixed

number of computational grids, referred to as zones.

Computations within each zone require only the occasional update

of boundary values. This lends itself to coarse-grained parallelism

based on message passing, assigning a number of zones to each

processing element. Fine-grained parallelism can be exploited via

multithreading in the solver routines within each zone. The

number of grid points within each zone often varies significantly.

We summarize the following benefits from hybrid programming,

which are discussed in [3]:

Flexible load balancing: A smaller number of PEs often allows

room to distribute work more evenly among PEs. In addition, PEs

with a very high workload could use multiple threads. Dynamic

thread scheduling can improve load-balancing on thread level.

Increase exposed parallelism: In an application where the outer

level of parallelism is limited, multithreading can provide a

convenient way to expose additional fine-grained, multi-level

parallelism. An example for this is LU-MZ from the NPB-MZ

suite.

Lower memory requirements: Multithreading can reduce the

amount of replicated data, the size of the symmetric heap, and the

size of required communication buffers. In general, one can

estimate the required memory per PE as the sum of: static data

segment, private heap, symmetric heap, stack, and communication

buffers. This will be extremely important for addressing memory

pressure on systems with thousands of cores per node. In

particular, the inter-PE shared memory model cannot address the

memory consumed per-node by static data.

Others: The hybrid approach may offer a convenient way to

exploit task-based parallelism, for example the OpenMP 4.0 task

extensions or OmpSs [1], [14]. An example is presented in [6].

MPI and OpenMP tasking was successfully employed to increase

parallelism by overlapping computational work with independent

MPI global communication.

An example that requires a higher level of thread-safety is the

SNAP Application Proxy [13]. It solves the linear Boltzmann

transport equation, i.e. determining the number of neutral

particles. A nested iterative algorithm is applied to solve the

“flux” function of seven independent variables at each time step: a

3-D spatial mesh, angles of travel and energy groups. The

parallelization strategy is based on an outer loop over all energy

groups implemented with multithreading and task scheduling for

load balancing. Each energy group is solved in parallel applying a

wavefront method that utilizes message passing on a two-

dimensional domain decomposition. This requires the threads to

issue communication calls. Furthermore, for the MPI

implementation of this application, a higher thread support level

correlates to higher parallel efficiency of the algorithm.

3.1 Analysis of Hybrid Programming in a

One-Sided Context
As we have discussed, the use of hybrid programming is

commonplace in message passing applications. The idea of using

hybrid programming in the context of one-sided communication

and multi-threading is not new. In the late 1990’s the shared

memory Multi-Level Parallelism (MLP) technique ([8], [9]),

developed at NASA Ames was shown to be successful in

improving the performance of CFD codes on large-scale shared

memory machines.

To achieve extreme-scale performance, we anticipate a need for

exploiting parallelism at multiple levels, taking into account all

system hierarchies, including memory hierarchies as well as

hierarchies in the system interconnect. While this can be achieved

through processes with interprocess shared memory, a hybrid

programming model may offer a better path to mapping

application multi-level parallelism onto system hierarchies. While

OpenSHMEM with interprocess shared memory addresses two

levels in the hierarchy, OpenSHMEM plus threads offers

additional capabilities for finer mapping to the system hierarchy.

However, efficient support for threads must be provided by both

the API and runtime system implementation. How much should

be exposed to the user via the API, and how much hidden under

the hood? The following Section IV will discuss some issues.

4. SOME THOUGHTS ON THREAD

SUPPORT
A basic requirement for threading support in OpenSHMEM is

thread safety. The OpenSHMEM community has already started

to propose and implement thread-safe OpenSHMEM. See for

example the work by [10], which defines several levels of thread

safety, similar to MPI. Library-level thread safety is

straightforward and well understood. However, it has the

disadvantage that thread synchronization is conjoined because

threads share the communication state of a single process. Calls to

synchronization routines like shmem_fence, shmem_quiet and

shmem_barrier affect all threads and may introduce unnecessary

and unwanted synchronization points that change the execution

flow and introduce inefficiencies. Furthermore, the threads share

network-level communication resources and state. For this

reason, ten Bruggencate et al. [10] also introduce an API that

binds threads to the SHMEM runtime, allowing them to

communicate independently.

Another approach is to declare each thread within a node to be an

OpenSHMEM PE, noting that PEs within a node naturally share

their memory. A disadvantage is the interoperability with other

programming models, for example OpenMP, OmpSs or Cilk. In

addition, symmetric objects are required for all PEs and this

model introduces a need for symmetric data segments in a single

virtual address space.

Ideally, we would like to have both – PEs as well as threads (or

some other lightweight execution units). Memory resources

should depend on the number of PES only, while the threads

should have their own communication resources. Threads should

be able to synchronize individually. Recently, a new approach to

thread integration was proposed that introduces per-thread

communication contexts [2]. Contexts allow threads to produce

individual streams of communication operations, without binding

them to the SHMEM runtime, eliminating interference between

threads while providing interoperability with a variety of

threading models.

While many important lessons can be learned from past hybrid

programs, the characteristics of new OpenSHMEM applications

may differ considerably from those based on domain

decomposition and coarse-grained communication. We foresee

the need for a high bandwidth and low latency for small put, get,

and atomic memory update operations. Hybrid OpenSHMEM

models must also aim to support these requirements, which have

additional sensitivities to threading overheads.

5. CONCLUDING REMARKS
OpenSHMEM+Threads provides performance and capability

opportunities beyond those of processes with interprocess shared

memory access, including flexible solutions to memory pressure,

multi-level parallelism, and optimized node-level programming.

Through such mechanisms, hybrid parallel programming with

OpenSHMEM may have the potential to significantly increase

application performance on extreme scale systems.

We discussed two major opportunities for utilizing a hybrid

model. Firstly, memory requirements may pose a major obstacle

for OpenSHMEM, due to its symmetric memory model. By

adding a second, non-symmetric node-level programming model,

users can adjust the level of per-node symmetry. Secondly, we

envision that a hierarchical programming paradigm is better suited

to exploit application-inherent multi-level parallelism, thereby

providing better mapping of the application onto system

hierarchies.

Recent activities within the OpenSHMEM community aim to

extend the standard to introduce hierarchies, teams, and

communication contexts. These extensions are potential avenues

for providing the necessary constructs to the application developer

to develop applications that can take advantage of all the compute

power that future high core-count and high node-count systems

will provide. In our future work, we plan to more deeply explore

these issues by evaluating inter-PE shared memory extension to

OpenSHMEM and comparing their effectiveness with

OpenSHMEM+Threads with respect to both performance as well

as programmability.

6. REFERENCES
[1] Barcelona Supercomputer Center (BSC), “The OmpSs

Programming Model”, Online: https://pm.bsc.es/ompss.

Accessed Sep. 2014.

[2] Dinan, J. and Flajslik, M.. “Contexts: A Mechanism for

High Throughput Communication in OpenSHMEM.”, In

Proc. 8th Intl. Conf. on Partitioned Global Address Space

Programming Models (PGAS). Oct. 7-10, 2014.

[3] Rabenseifner, R.; Hager, G.; Jost, G., "Hybrid MPI/OpenMP

Parallel Programming on Clusters of Multi-Core SMP

Nodes," In Proc. 17th Euromicro International Conference

on Parallel, Distributed and Network-based Processing

(PDP). Feb. 2009.

[4] Hammond, J., R.; Ghosh, S.; and Chapman, E., M.,

"Implementing OpenSHMEM using MPI-3 one-sided

communication.", OpenSHMEM and Related Technologies.

Experiences, Implementations, and Tools. Lecture Notes in

Computer Science, Volume 8356, pp 44-58. 2014.

[5] Jost, G. and Robins, R., “Experiences using hybrid MPI /

OpenMP in the real world: Parallelization of a 3D CFD

solver for multi-core node clusters,” Scientific Programming,

IOS Press, Special Issue on Exploring Languages for

Expressing Medium to Massive On-Chip Parallelism, pp.

127 – 138, IOS Press, Jan 2011.

[6] Koniges, A. E., et. al., “Application Acceleration on Current

and Future Cray Platforms”, Proc. 52nd Cray User Group

Meeting, Simulation Comes of Age (CUG). Edinburgh,

United Kingdom. May, 2010.

[7] Potluri, S.; Kandalla, K.; Bureddy, D.; Li, M.; Panda, D.K.:

“Efficient Intranode Desgins for OpenSHMEM on Multicore

Clusters”. In: 6th Conference on Partitioned Global Address

Space (PGAS). 2012.

[8] Taft, J., R. “Performance of the Overflow-MLP CFD Code

on the NASA Ames SGI Origin,” NAS Technical Report

NAS-00-005. March, 2000.

[9] Taft, J.R. “Multi-Level Parallelism (MLP): A Simple Highly

Scalable Approach to Parallelism,” In Proc. HPCCP/CAS

Workshop. 1998.

[10] ten Bruggencate, M.; Roweth, D.; and Oyanagi, S. “Thread-

safe SHMEM extensions,” OpenSHMEM and Related

Technologies. Experiences, Implementations, and Tools.

Lecture Notes in Computer Science, Volume 8356, pp 178-

185. 2014.

[11] University of Houston, “NAS parallel benchmarks for

OpenSHMEM, version 1.0a,” Online:

http://openshmem.org/site/Downloads/Examples, Accessed:

Sep. 2014.

[12] Van der Wijngaart, R. and Jin, H. “NAS Parallel

Benchmarks, Multi-Zone Versions,” NAS Technical Report

NAS-03-010. July, 2003.

[13] Zerr, Robert J. and Baker, Randal S., “SNAP: SN (Discrete

Ordinates) Application Proxy,” Online:

https://github.com/losalamos/SNAP. Accessed: Sep., 2014.

https://pm.bsc.es/ompss
http://openshmem.org/site/Downloads/Examples
https://github.com/losalamos/SNAP

