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ABSTRACT 

The purpose of this document is to stimulate discussions on 

support for multi-threaded execution in OpenSHMEM. Why is 

there a need for any thread support at all for an API that follows a 

shared global address space paradigm?  In our ongoing work, we 

investigate opportunities and challenges introduced through 

multi-threading, namely implementation challenges and 

opportunities and required – as well desirable – extensions to the 

API.   

Categories and Subject Descriptors 

D.3.3 [Programming Languages]: Language Constructs and 

Features – Concurrent programming structures, Patterns, 

Frameworks 

General Terms 

Algorithms, Performance, Languages. 

Keywords 

OpenSHMEM, threading, hybrid programming. 

1. MOTIVATION 
Current large-scale HPC systems are typically clusters of multi-

core nodes. The trend in hardware architectures suggests that the 

number of cores per node will continue to increase while memory 

per core decreases. To take advantage of these cores, the number 

of threads and processes executed per node will also increase. 

However, processes with separate virtual address spaces partition 

the node memory, resulting in memory pressure. Hybrid parallel 

programming with processes and threads is a popular remedy to 

this problem, because it extends existing process-based parallel 

programming libraries with intranode data sharing [3]. 

The OpenSHMEM parallel programming model follows the 

partitioned global address space (PGAS) paradigm, a model that 

is well suited for platforms with non-uniform memory access 

latencies. The OpenSHMEM specification also provides support 

for direct load/store memory access within a node, which 

alleviates the need to use threads for this purpose. 

Why should we introduce threads to OpenSHMEM if inter-PE 

shared memory can be already exploited directly through the 

OpenSHMEM interface? Doesn’t this just introduce overhead 

through e.g. forking, joining and other thread management issues? 

Hybrid programming with threads also introduces extra 

application development effort and program complexity.  

Nevertheless, lessons learned from other programming models 

indicate that there might be other benefits provided by a hybrid 

approach. 

We discuss some preliminary observations regarding the 

OpenSHMEM model and challenges when programming for SMP 

node clusters in Section II. In Section III we give examples for 

opportunities using a hybrid approach and in Section IV we 

discuss some ideas on necessary support within OpenSHMEM. In 

Section V we summarize the status of our current ongoing work 

and outline future work. Through this work, we aim to stimulate 

discussion between application developers, the OpenSHMEM 

specification committee, and OpenSHMEM implementers to 

determine requirements to extend OpenSHMEM for future 

extreme-scale environments. 

2. SHMEM ON SMP NODE CLUSTERS 

2.1 Preliminary Observations 
OpenSHMEM is a library API that provides a single program 

multiple data (SPMD) execution, in which participating processes 

(the places where work occurs are called Processing Elements or 

PEs) view each other’s data through a partitioned global address 

space (PGAS). Note that in a multi-threaded environment, the PE 

corresponds to the process, not the thread. The OpenSHMEM 

model defines two shared, symmetric memory segments: data and 

heap segments. The data segment contains statically declared 

shared objects, and the heap contains dynamically allocated 

shared objects. 

Symmetric objects are accessed using a PE’s local pointer to the 

given symmetric object, and the desired target PE. When running 

within the same SMP node, shared data segments of peer PEs can 

be mapped into the address space of a given PE. Support for this 

is provided through the shmem_ptr function, which queries the 

local pointer for another PE’s instance of a symmetric object.  

2.2 Performance Challenges on SMP Node 

Clusters 
HPC systems have become increasingly “non-isotropic” at the 

node level with a rich hierarchy of shared caches, ccNUMA 

domains, multiple sockets and a large number of cores. 

Applications also expose hierarchies in their parallel 

 

 



decomposition. Such hierarchies are introduced, e.g. by domain 

decomposition and intra-domain solver routines. Mapping the 

application sub-domains onto the hardware hierarchy is a 

challenging problem. For high overall application performance, 

one must address both communication and computational 

performance. 

Communication performance is impacted by multicore and 

multisocket anistotropy effects, such as differences in inter-node 

vs intra-node communication, communication patterns of the 

application, bandwidth bottlenecks, and impact of shared caches. 

Placing multiple processes on a node will often yield unnecessary 

calls to the communication library.  A small number of PEs per 

node may not be able to saturate the network bandwidth and may 

waste compute resources.  

Computational performance is impacted by factors like ccNUMA 

locality effects, penalties for access across NUMA domain 

boundaries, messaging pattern and resource requirements.  

When employing multiple threads per process, it is often difficult 

to determine the right balance of processes and threads per node 

to achieve the best core performance and memory bandwidth. To 

highlight this with an anecdotal data point, we run the 

OpenSHMEM NAS Parallel Benchmark (NPB) Scalar Penta-

diagonal solver (SP) implementation developed at the University 

of Houston [11] on a Cray XC30 (16 cores per node + hyper-

threading).  We used the Cray compiler Version 8.2.5 and Cray 

SHMEM 6.3.0. We have gathered some execution characteristics 

that are shown in Figure 1. The goal was not an in-depth analysis 

of the algorithms nor a performance assessment of the Cray 

system. We ran two experiments, employing 4 and 16 PES per 

node. We have normalized the values to a range of 0 to 1 in order 

to observe how they vary with respect to each other.  Increasing 

the number of PES will result in more, yet shorter messages. The 

memory requirements increase with growing number of PEs. Most 

notable is the difference in Mops between 16 and 4 PEs per node. 

It points to the fact that packing all cores with processes may not 

always be the most efficient way to execute or may not be 

possible due to memory limitations. However, reducing the 

number of PEs leaves a quarter of the cores idle. While this 

example is rather trivial, we have noted similar effects in real-

world cases [5]. 

 

 

Figure 1. Characteristics of OpenSHMEM NPB SP. 

 

An efficient OpenSHMEM implementation can avoid unnecessary 

communication calls within a node. This is demonstrated in the 

optimized OpenSHMEM implementation by [7] and by OSHMPI 

[4], an OpenSHMEM implementation based on MPI. It will, for 

example, not issue calls to MPI_Put within a node but rather use 

direct load/store provided by MPI-3. Similarly, an OpenSHMEM 

implementation could address some of the ccNUMA aspects with 

respect to avoiding inter-domain contention through efficient 

placement of symmetric data and communication buffers.  

So, is hybrid OpenSHMEM+Threads indeed bad idea? In the next 

section we will look into how hybrid programming could improve 

application performance. 

3. OPPORTUNTIES AND BENEFITS OF 

HYBRID PROGRAMMING 
Applications that utilize a hybrid execution model can be 

categorized as shown in Figure 2.  

The “master-only” (PE only) mode typically has calls to the 

communication API only outside of multithreaded regions. This 

requires the lowest level of thread-safety in which only a master 

thread issues communication calls. Compute threads typically 

sleep during communication calls and it may be hard to sustain 

full communication bandwidth with just a single process per node.  

A higher level of thread safety is required if calls to the 

communication API occur within parallel regions. Executing in 

this mode provides the opportunity to overlap communication and 

computation by assigning a subset of threads to communication 

and the rest to computation. It also enables pipelined thread 

execution across multiple processes and facilitates the 

implementation of wave-front methods. 

 

 

Figure 2. Hybrid Communication API Usage Models. 

 

Most hybrid programming today is based on employing two-sided 

MPI communication and OpenMP for multithreading.  Users have 

observed considerable benefits when exploiting multi-level 

parallelism based on domain composition [3]. 

Certain classes of applications can benefit by employing the 

master-only mode. Examples for this are the multi-zone versions 

of the NAS Parallel Benchmarks [12]. These benchmarks capture 

the behavior of applications from the field of Computational Fluid 

Dynamics. Complex structural domains are covered by a fixed 

number of computational grids, referred to as zones. 

Computations within each zone require only the occasional update 

of boundary values. This lends itself to coarse-grained parallelism 

based on message passing, assigning a number of zones to each 

processing element. Fine-grained parallelism can be exploited via 

multithreading in the solver routines within each zone. The 

number of grid points within each zone often varies significantly. 



We summarize the following benefits from hybrid programming, 

which are discussed in [3]:  

Flexible load balancing: A smaller number of PEs often allows 

room to distribute work more evenly among PEs. In addition, PEs 

with a very high workload could use multiple threads. Dynamic 

thread scheduling can improve load-balancing on thread level. 

Increase exposed parallelism: In an application where the outer 

level of parallelism is limited, multithreading can provide a 

convenient way to expose additional fine-grained, multi-level 

parallelism. An example for this is LU-MZ from the NPB-MZ 

suite. 

Lower memory requirements: Multithreading can reduce the 

amount of replicated data, the size of the symmetric heap, and the 

size of required communication buffers. In general, one can 

estimate the required memory per PE as the sum of: static data 

segment, private heap, symmetric heap, stack, and communication 

buffers. This will be extremely important for addressing memory 

pressure on systems with thousands of cores per node.  In 

particular, the inter-PE shared memory model cannot address the 

memory consumed per-node by static data. 

Others: The hybrid approach may offer a convenient way to 

exploit task-based parallelism, for example the OpenMP 4.0 task 

extensions or OmpSs [1], [14]. An example is presented in [6]. 

MPI and OpenMP tasking was successfully employed to increase 

parallelism by overlapping computational work with independent 

MPI global communication.   

An example that requires a higher level of thread-safety is the 

SNAP Application Proxy [13]. It solves the linear Boltzmann 

transport equation, i.e. determining the number of neutral 

particles. A nested iterative algorithm is applied to solve the 

“flux” function of seven independent variables at each time step: a 

3-D spatial mesh, angles of travel and energy groups. The 

parallelization strategy is based on an outer loop over all energy 

groups implemented with multithreading and task scheduling for 

load balancing. Each energy group is solved in parallel applying a 

wavefront method that utilizes message passing on a two-

dimensional domain decomposition. This requires the threads to 

issue communication calls. Furthermore, for the MPI 

implementation of this application, a higher thread support level 

correlates to higher parallel efficiency of the algorithm. 

3.1 Analysis of Hybrid Programming in a 

One-Sided Context 
As we have discussed, the use of hybrid programming is 

commonplace in message passing applications.  The idea of using 

hybrid programming in the context of one-sided communication 

and multi-threading is not new. In the late 1990’s the shared 

memory Multi-Level Parallelism (MLP) technique ([8], [9]), 

developed at NASA Ames was shown to be successful in 

improving the performance of CFD codes on large-scale shared 

memory machines.  

To achieve extreme-scale performance, we anticipate a need for 

exploiting parallelism at multiple levels, taking into account all 

system hierarchies, including memory hierarchies as well as 

hierarchies in the system interconnect. While this can be achieved 

through processes with interprocess shared memory, a hybrid 

programming model may offer a better path to mapping 

application multi-level parallelism onto system hierarchies.  While 

OpenSHMEM with interprocess shared memory addresses two 

levels in the hierarchy, OpenSHMEM plus threads offers 

additional capabilities for finer mapping to the system hierarchy. 

However, efficient support for threads must be provided by both 

the API and runtime system implementation. How much should 

be exposed to the user via the API, and how much hidden under 

the hood? The following Section IV will discuss some issues. 

4. SOME THOUGHTS ON THREAD 

SUPPORT 
A basic requirement for threading support in OpenSHMEM is 

thread safety. The OpenSHMEM community has already started 

to propose and implement thread-safe OpenSHMEM. See for 

example the work by [10], which defines several levels of thread 

safety, similar to MPI. Library-level thread safety is 

straightforward and well understood. However, it has the 

disadvantage that thread synchronization is conjoined because 

threads share the communication state of a single process. Calls to 

synchronization routines like shmem_fence, shmem_quiet and 

shmem_barrier affect all threads and may introduce unnecessary 

and unwanted synchronization points that change the execution 

flow and introduce inefficiencies. Furthermore, the threads share 

network-level communication resources and state.  For this 

reason, ten Bruggencate et al. [10] also introduce an API that 

binds threads to the SHMEM runtime, allowing them to 

communicate independently. 

Another approach is to declare each thread within a node to be an 

OpenSHMEM PE, noting that PEs within a node naturally share 

their memory. A disadvantage is the interoperability with other 

programming models, for example OpenMP, OmpSs or Cilk. In 

addition, symmetric objects are required for all PEs and this 

model introduces a need for symmetric data segments in a single 

virtual address space.  

Ideally, we would like to have both – PEs as well as threads (or 

some other lightweight execution units). Memory resources 

should depend on the number of PES only, while the threads 

should have their own communication resources. Threads should 

be able to synchronize individually. Recently, a new approach to 

thread integration was proposed that introduces per-thread 

communication contexts [2].  Contexts allow threads to produce 

individual streams of communication operations, without binding 

them to the SHMEM runtime, eliminating interference between 

threads while providing interoperability with a variety of 

threading models. 

While many important lessons can be learned from past hybrid 

programs, the characteristics of new OpenSHMEM applications 

may differ considerably from those based on domain 

decomposition and coarse-grained communication. We foresee 

the need for a high bandwidth and low latency for small put, get, 

and atomic memory update operations. Hybrid OpenSHMEM 

models must also aim to support these requirements, which have 

additional sensitivities to threading overheads. 

5. CONCLUDING REMARKS 
OpenSHMEM+Threads provides performance and capability 

opportunities beyond those of processes with interprocess shared 

memory access, including flexible solutions to memory pressure, 

multi-level parallelism, and optimized node-level programming. 

Through such mechanisms, hybrid parallel programming with 

OpenSHMEM may have the potential to significantly increase 

application performance on extreme scale systems. 



We discussed two major opportunities for utilizing a hybrid 

model. Firstly, memory requirements may pose a major obstacle 

for OpenSHMEM, due to its symmetric memory model. By 

adding a second, non-symmetric node-level programming model, 

users can adjust the level of per-node symmetry. Secondly, we 

envision that a hierarchical programming paradigm is better suited 

to exploit application-inherent multi-level parallelism, thereby 

providing better mapping of the application onto system 

hierarchies. 

Recent activities within the OpenSHMEM community aim to 

extend the standard to introduce hierarchies, teams, and 

communication contexts. These extensions are potential avenues 

for providing the necessary constructs to the application developer 

to develop applications that can take advantage of all the compute 

power that future high core-count and high node-count systems 

will provide. In our future work, we plan to more deeply explore 

these issues by evaluating inter-PE shared memory extension to 

OpenSHMEM and comparing their effectiveness with 

OpenSHMEM+Threads with respect to both performance as well 

as programmability. 
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