
Asymmetric Memory Extension for Openshmem

Latchesar Ionkov

Los Alamos National Laboratory

Los Alamos, NM 87545

lionkov@lanl.gov

Ginger Young

Los Alamos National Laboratory

Los Alamos, NM 87545

gingery@lanl.gov

ABSTRACT
Memory allocation in Openshmem is a global operation that
requires in-step calls from all Processing Elements (PEs).
Although this approach works with applications that split
the work evenly, it prevents using Openshmem in cases where
the workload and the memory it uses are allocated dynam-
ically and can change significantly while the application is
running. To broaden the cases where Openshmem can be
used, we propose an extension – asymmetric memory sup-
port. The extension allows PEs to allocate memory indepen-
dently, and make this memory available for remote access
from other PEs.

1. INTRODUCTION
Openshmem [1] is a specification of an API for one-sided
communication in a Partitioned Global Address Space (PGAS)
environment. It provides a small set of operations that allow
Remote Memory Access (RMA) as well as atomics and col-
lectives. Openshmem application consists multiple threads
of execution called Processing Elements (PEs), running on
multiple nodes of a supercomputer. To access remote mem-
ory, the application needs to specify the PE identifier(s) as
well as address(es) of memory. Openshmem defines two cat-
egories of memory: local memory inaccessible to other PEs
and symmetric memory. Symmetric memory can be used by
remote PEs to read, write, or perform atomic or collective
operations. All global variables defined in an Openshmem
program are located in the symmetric memory. In addition,
Openshmem provides a function that can dynamically allo-
cate symmetric memory. The function is global, and all PEs
need to call it at the same time and with the same param-
eters. The operation allocates identical memory regions on
all PEs, and uses the address of the locally allocated region
as an identifier for the remote regions.

Symmetric memory allocation works well for code that splits
a problem evenly between all PEs, but won’t work well in
more heterogeneous environments, where the problems are
more asymmetric, or the hardware configuration of the su-

percomputer’s nodes is not homogeneous.

We propose an extension to Openshmem that adds an addi-
tional type of memory – asymmetric memory. Asymmetric
memory is allocated the same way as local memory is, by
using the malloc function or an equivalent. The memory
can be registered for remote access by other PEs. The PEs
can use the tuple (PE, local-address) to access the registered
memory.

2. DESIGN
Our main design principle was keeping the extension close to
the Openshmem’s design philosophy. The return value mem

of the Openshmem’s symmetric memory allocation function
(shmalloc) is used for two di↵erent purposes. Firstly, it is the
address of a local memory region that can be accessed by the
local PE directly, without using the Openshmem operations.
Secondly, a value between mem and mem+size can be used to
specify a remote memory location as a source or destination
of an RMA. We decided to keep the same convention and
use the local address of the asymmetric memory region to
specify the location for the RMAs. The global nature of the
symmetric memory allocation has an important advantage
– all PEs know the address to use in order to access remote
symmetric memory. For asymmetric memory, the PE that
allocated it needs to use separate mechanisms to pass the
address to the remote PEs.

Instead of defining an asymmetric memory equivalent of
shmalloc, we decided to give more freedom to the devel-
opers on how to allocate the asymmetric memory regions.
The main reason for that was to allow the users to use the
mmap system call to allow direct access to files from remote
PEs. We assume that the asymmetric memory region will
be allocated first (by using malloc, new, or mmap) and then
registered for remote access.

The ultimate goal is to use the standard Openshmem opera-
tions for accessing both symmetric and asymmetric memory.
For start, we added separate operations that do RMA access
to asymmetric memory, but we expect to remove them and
use the standard Openshmem calls.

Our extension defines the following operations:

init() Initializes the asymmetric memory sup-
port.

register(p, sz) Registers asymmetric memory region with
starting address p and size sz;

unregister(p) Unregisters asymmetric memory region with
starting address p;

put(t, s, n, p) Transfers data from local memory s to re-
mote asymmetric memory t. The remote
address t needs to be within a registered
asymmetric region on remote PE p.

get(t, s, n, p) Transfers data from remote asymmetric
memory s to local memory t. The remote
address s needs to be within a registered
asymmetric region on remote PE p.

3. IMPLEMENTATION
We based our code on the Openshmem implementation that
uses UCCS [2] for low-level communication. In order to per-
form remote access to another node’s memory, the PE needs
to know the remote handle of the memory. The remote han-
dle is a opaque value of type uccs_remote_reg_handle_t,
that is provided by UCCS when the uccs_register_memory
function is called.

The main problem that our implementation needs to solve is
how to provide that remote handles to the other PEs, so they
can use them for the RMA. We use a region of symmetric
memory to build a translation table from local addresses to
remote handles. Each PE keeps a copy of every other PEs
table in its local memory.

When a PE registers a new region of asymmetric memory,
a new entry is added to its table. The entry contains the
starting address of the region, its size, and its remote handle.
Then the PE can use any mechanism to pass the address
of the asymmetric memory to other PEs. When another
PE tries to do RMA to an asymmetric memory region, it
checks its local copy of the remote PEs table. If it finds an
entry that describes the required address, it uses the remote
handle from that entry. If no entry is found, the PE uses the
standard Openshmem operation to retrieve an up-to-date
copy of the table from the remote PEs symmetric memory,
and the table is searched again for match. If there is still
no match, an error is returned. If a UCCS operation with
the cached remote handle fails, we assume that the remote
handle might be invalid (for example by unregistering the
memory region) and update the local table before retrying
the operation.

In order to speed up the address-to-handle lookup, we keep
the entries in the table sorted by the starting address of the
region. This approach allows us to check a match by using
binary search in O(log2(N)) comparisons.

4. PERFORMANCE
We evaluated the performance by comparing accessing asym-
metric memory to the standard Openshmem operations ac-
cessing symmetric memory. Our test runs on 256 nodes, one
PE per node, and performs one million RMA operations
(approximately half of them puts and half gets) to PE0’s
memory. We allocate a single symmetric region, and vary
the number of asymmetric regions registered to measure the
slowdown of the table lookup.

Figure 1 shows the performance results for RMA with block
size of 1 KB. There is significant slowdown for large number
of registered asymmetric areas.

 1000

 1500

 2000

 2500

 3000

 3500

 0 200 400 600 800 1000 1200

Ti
m

e
(m

s)

Number Of Areas

Asym Put
Asym Get
Sym Put
Sym Get

Figure 1: Time to perform 1 million RMA opera-

tions

5. CONCLUSION
We have demonstrated an initial implementation of asym-
metric memory for Openshmem that would allow for more
flexible Openshmem applications, and better utilization of
heterogeneous environments. We plan to extend the opera-
tions provided to include atomics, and if possible, collectives.

Acknowledgments
This work was performed at the Ultrascale Systems Research
Center (USRC) in the High Performance Computing Divi-
sion at Los Alamos National Laboratory, and is supported
by the U.S. Department of Defense. The publication has
been assigned the LANL identifier LA-UR-14-27689.

6. REFERENCES
[1] S. W. Poole, O. Hernandez, J. A. Kuehn, G. M.

Shipman, A. Curtis, and K. Feind. Openshmem-toward
a unified rma model. In Encyclopedia of Parallel

Computing, pages 1379–1391. Springer, 2011.
[2] P. Shamis, M. Venkata, J. Kuehn, S. Poole, and

R. Graham. Universal common communication
substrate (uccs) specification. Technical report, Version
0.1. Tech Report ORNL/TM-2012/339, Oak Ridge
National Laboratory, ORNL, 2012.

