
Scalable MiniMD Design with Hybrid
MPI and OpenSHMEM ∗

Mingzhe Li
The Ohio State University

limin@cse.ohio-state.edu

Jian Lin
The Ohio State University

linjia@cse.ohio-state.edu

Xiaoyi Lu
The Ohio State University

luxi@cse.ohio-state.edu
Khaled Hamidouche

The Ohio State University
hamidouc@cse.ohio-

state.edu

Karen Tomko
Ohio Supercomputer Center

ktomko@osc.edu

Dhabaleswar K. (DK)
Panda

The Ohio State University
panda@cse.ohio-

state.edu

ABSTRACT
The MPI programming model has been widely used for scientific
applications. The emergence of Partitioned Global Address Space
(PGAS) programming models presents an alternative approach to
improve programmability. With the global data view and light-
weight communication operations, PGAS has the potential to in-
crease the performance of scientific applications at scale. How-
ever, since the PGAS models are emerging, it is unlikely that entire
applications will be re-written with them. Instead, unified com-
munication runtimes have paved the way for a new class of hy-
brid applications that can leverage the benefits of both MPI and
PGAS models. In this paper, we re-design an existing MPI based
scientific mini-application (MiniMD) with MPI and OpenSHMEM
programming models. We propose two alternative designs using
MPI and OpenSHMEM programming models and compare perfor-
mance and scalability of those designs with the original MPI-based
implementation. Our performance evaluations using MVAPICH2-
X (Unified MPI+PGAS Communication Runtime over InfiniBand)
show a 17% reduction in total execution time, compared to existing
MPI-based design with 1,024 cores.

1. INTRODUCTION
The Message Passing Interface (MPI) has been the de-facto stan-
dard programming model for High Performance Computing (HPC)
applications. MPI is successfully used to implement regular, it-
erative parallel algorithms with well-defined communication be-
haviors. Data-driven applications often pose challenges associated
with load balancing and often exhibit irregular communication pat-
terns. These issues are hard to address with a traditional message-

9∗This research is supported in part by National Science Founda-
tion grants #CCF-1213084, #CNS-1347189, #CNS-1419123 and
#IIS-1447804. It used the Extreme Science and Engineering Dis-
covery Environment (XSEDE), which is supported by National Sci-
ence Foundation grant number OCI-1053575.

passing programming paradigm.

The Partitioned Global Address Space (PGAS) programming mod-
els present an alternative approach compared to message passing
and are believed to improve programmability of such applications [2].
However, the PGAS models are still emerging and being standard-
ized, whereas MPI is much more widely adopted. Owing to these
reasons, it is unlikely that applications will be re-written solely with
the PGAS models in the future. It is more likely that applications
will continue to be written with MPI as their primary programming
model; but, parts of the applications will be adapted to use a PGAS
model, such as Unified Parallel C (UPC) or OpenSHMEM, leading
to a class of “hybrid” applications. Indeed, the Exascale roadmap
identifies the hybrid model as the ‘practical’ way of programming
exascale systems [2]. Further, this trend has paved the way for
unified communication runtimes, such as, MVAPICH2-X [5], that
allow applications to leverage the best of both MPI and PGAS mod-
els.

Some studies have shown the benefits of porting existing MPI ap-
plications to pure OpenSHMEM or Hybrid MPI and OpenSHMEM
based design. Pophale et al. [7] presented a port of the MPI based
NAS Parallel Benchmarks to a pure OpenSHMEM based version
and demonstrates good performance improvements. Jose et al. [4]
proposed a hybrid MPI+OpenSHMEM based Graph500. Dinan et
al. [1] proposed different hybrid program execution models. Stud-
ies [9] and [8] discussed converting MPI applications to PGAS
models, but focus only on changing the communication to one-
sided semantics. Numrich et al. [6] presented a performance model
for the computation and communication in the MPI reference im-
plementation of MiniMD.

In this paper, we first discuss the existing MPI MiniMD imple-
mentation in detail. Then we analyze the dominant communication
functions. Based on our analysis, we re-design the existing Min-
iMD application with hybrid MPI and OpenSHMEM programming
models. Performance evaluations using MVAPICH2-X [5] show a
reduction in total execution time by up to 17%, compared to the
existing MPI design at 1,024 cores. Our scalability analysis reveals
that our hybrid MPI plus OpenSHMEM based design demonstrates
good scaling (both weak and strong). To summarize, the following
contributions are made in this paper:

1. Identify dominant MPI communication routines in existing

MPI based MiniMD implementation

2. Propose two alternative hybrid MPI and OpenSHMEM based
designs

3. Present in-depth performance evaluation among different de-
signs

2. OVERVIEW OF MINIMD AND COMMU-
NICATION CHARACTERISTICS

MiniMD is a Molecular Dynamics (MD) mini-application in the
Mantevo [3] mini-application suite. It implements the Lennard–
Jones interaction calculations and corresponding communication
as in the LAMMPS software. MiniMD computes atom movement
over 3D space and uses a spatially decomposed parallel MD method,
where each process owns a subset of the simulation box. The pri-
mary work loop performs the following steps:

1. Depending on the atom locations, migrate the atoms to dif-
ferent ranks in every 20th iteration

2. Neighboring ranks exchange position information of atoms
in boundary regions

3. Compute forces based on both local atoms and those in bound-
ary regions from neighboring ranks

4. Neighboring ranks exchange force information of atoms in
boundary regions

5. Update velocities and positions of local atoms

MiniMD has a stencil communication pattern which employs point-
to-point message passing with irregular data during steps 2 and 4.
A more complete description of the algorithm can be found in [6].
For this study, we focus on porting the MPI routines used in steps
2 and 4 to OpenSHMEM one-sided semantics.

In order to re-design MiniMD with MPI and OpenSHMEM, we
need to find out which are the dominant MPI routines used in Min-
iMD. Table 1 lists all the MPI routines used in the reference MPI
MiniMD and their purposes. Our profiling results show that the
MPI point-to-point routines take up to 40%–90% out of the to-
tal communication time for input sizes ranging from 64*64*64 to
128*256*256. The MPI collective routines for data distribution at
the beginning of the program and data collection at the end of the
program take a very small portion of total communication time.
Similarly, the MPI cartesian topology setup routines do not take
much time either. Based on our analysis, our design focuses on
porting point-to-point message passing semantics to OpenSHMEM
one-sided semantics. With this approach, our proposed design can
take advantage of the MPI topology routines that are not available
for OpenSHMEM yet and also use the light-weight OpenSHMEM
one-sided semantics.

3. PROPOSED DESIGNS
In the following two subsections, we introduce two design alterna-
tives to re-design the point-to-point communication in the existing
MPI-based version. We keep the same molecular dynamics (MD)
algorithm in both proposed designs. Thus, the communication pat-
tern and volume of data transferred in our proposed hybrid versions
are the same as in the existing MPI-based version. Also, MPI rank
and OpenSHMEM rank of the hybrid program are kept the same.

Table 1: Major MPI Routines Used in Existing MiniMD

MPI Routine Purpose
MPI_Cart_create
MPI_Cart_get
MPI_Cart_shift

Topology setup for spatial decomposi-
tion

MPI_Send MPI_Irecv
MPI_Wait

Transfer atoms between neighbor pro-
cesses and exchange position and force
information of atoms

MPI_Allreduce
MPI_Bcast

Setup input data and collect information
to generate output report

3.1 Hybrid-Barrier Design
To port message passing semantics to one-sided semantics, we need
to take care of both communication and synchronization. Since all
communication patterns are kept the same as the original version,
our Hybrid-Barrier design aims to replace MPI_Send/MPI_Irecv
with corresponding OpenSHMEM one-sided functions. In our case,
we replace MPI_Send with shmem_putmem in the origin process.
In order to ensure completeness and synchronization between the
origin and target process, we add a shmem_barrier before and af-
ter each shmem_putmem. Our Hybrid-Barrier design is similar to
the one proposed in [7]. We keep the same send buffer and receive
buffer used in the original MPI based design. And, we allocate
this receive buffer in OpenSHMEM heap memory. In this way, the
origin processes can directly access this memory region without
interrupting the target process.

3.2 Hybrid-Advanced Design
From Section 3.1, we see that directly porting MPI semantics to
corresponding OpenSHMEM semantics will add some overhead as
a result of the global barrier. In order to re-design a high perfor-
mance and scalable MiniMD, there are several things to be taken
care of: What is the size of the receive buffer and how can it be
managed? How can the origin process know the target address?
How to ensure coordination between multiple sender processes and
coordination between the origin and the target processes?

P0	
 P1	

Recv	
 Buffer	

W	
 	
 	
 	
 	
 	
 	
 	
 R	

Recv	
 Buffer	

W	
 	
 	
 	
 	
 	
 	
 	
 R	

1	

2

3

SHMEM	
 Heap	
 Memory	
 SHMEM	
 Heap	
 Memory	

Figure 1: Hybrid-Advanced Design Overview

Figure 1 shows overview of our Hybrid-Advanced design. To start,
we replace MPI_Send in the sender process with shmem_putmem
as in our first design. In the initialization phase, every process uses
shmalloc to allocate a heap memory region as receive buffer. Each
process maintains two indices for this buffer. One is the read in-
dex and the other is the write index, both of them initially point to
the beginning of the process’s local receive buffer. Both of them
will be reset when they reach the end of the receive buffer. Write
index marks the point where the origin process can start to write
data. Read index marks the point where the local process starts to
read from the receive buffer. When one process needs to write data
to a target process, it issues atomic shmem_longlong_fadd to fetch
both the read and write indices. When the origin process gets the
target process write index and read index, it needs to check whether
there is enough space for new data. Based on the return values, the

origin process proceeds with one of the three options: 1) If the new
data can fit into the target process receive buffer, it issues atomic
shm_longlong_fadd (data_size) to the target process to update this
write index and get a target address where it will write the data. Af-
ter this atomic operation, the origin process can start to write data
into target process memory. 2) If the write index reaches the end of
the receive buffer, the origin process needs to reset this write index
by issuing atomic shmem_longlong_cswap. When this resetting is
finished, the origin process can follow the same step as step 1 to
write data to the target process. 3) If the write index does not reach
the end of the receive buffer and read index minus write index is
smaller than data size, it means that there is not enough space for
the new data in the receive buffer at this point. The origin process
has to wait until more receive buffer space is available before send-
ing. Regarding the target process, it is not actively involved in the
data transfer. So it only polls on local buffer to wait for incoming
data. With this circular buffer management design, we can avoid a
high memory footprint. An alternative buffer management scheme
is double buffering. However, it will increase memory footprint
compared to our proposed circular buffer design. So we did not
pursue that design. Furthermore, we can avoid the global barrier
bottleneck.

4. PERFORMANCE EVALUATION
4.1 Experimental Setup
Cluster A: This cluster (TACC Stampede [10]) is equipped with
compute nodes with Intel Sandybridge series of processors using
Xeon dual eight-core sockets, operating at 2.70 GHz with 32 GB
RAM. Each node is equipped with MT4099 FDR ConnectX HCAs
(56 Gbps data rate) with PCI-Ex Gen3 interfaces. The operating
system used is CentOS release 6.3.

Cluster B: This cluster consists of 144 compute nodes with Intel
Westmere series of processors using Xeon Dual quad-core proces-
sor nodes operating at 2.67 GHz with 12 GB RAM. Each node
is equipped with MT26428 QDR ConnectX HCAs (32 Gbps data
rate) with PCI-Ex Gen2 interfaces. The operating system used is
Red Hat Enterprise Linux Server release 6.3 (Santiago), with ker-
nel version 2.6.32-71.el6 and OpenFabrics version 1.5.3-3.

We used the MPI reference implementation from MiniMD v1.0 as
our base code for these experiments and MVAPICH2-X 2.0 stack.

4.2 Performance

 0

 500

 1000

 1500

 2000

 2500

 3000

512 1,024

T
im

e
(m

s)

Number of Cores

Hybrid-Barrier
MPI-Original

Hybrid-Advanced

Figure 2: Performance Results

Figure 2 presents the performance results of those two proposed
designs and compare them with the existing MPI-based version.
These experiments were executed on Cluster B with 512 and 1,024
cores. In our experiments, we run one MPI process per core. From
the figure, we can see that the Hybrid-Advanced version outper-
forms each of the other two versions. With 1,024 cores, the time
taken by the existing MPI version was 0.98 seconds, whereas our
proposed Hybrid-Advanced version took just 0.81 seconds. This
is about a 17% reduction in execution time. The time taken by
the Hybrid-Barrier version was 1.10 seconds, which is about 12%
worse than the existing MPI based version. The performance degra-
dation in this Hybrid-Barrier version comes from the global barrier
used to ensure completeness of each communication operation and
synchronization between processes. There are three reasons for
we obtain performance benefits in our proposed design: 1) Reduc-
ing the communication and synchronization time by using lighter-
weight one-sided routines vs. MPI two-sided. 2) Avoiding the busy
polling of MPI_Wait used in existing MPI based version by resort-
ing to light-weight local polling for the target process. 3) Achieving
a better computation/communication overlap due to the one-sided
semantics. Figure 3 shows the execution time breakdowns in com-
putation and communication for two runs with 512 and 1,024 cores,
respectively. We can see that our proposed Hybrid-Advanced ver-
sion helps reduce the communication time compared with existing
MPI based version.

 0

 500

 1,000

 1,500

 2,000

 2,500

 3,000

Hybrid−Barrier

M
PI−Original

Hybrid−Advanced

Hybrid−Barrier

M
PI−Original

Hybrid−Advanced

T
im

e
(m

s)

Number of Cores
512 1,024

Computation
Communication

Figure 3: Execution Time Breakdown

4.3 Scalability

 0

 2

 4

 6

 8

 10

 12

 14

 16

 128 256 512 1024

A
to

m
s

P
er

 S
ec

 (
e+

0
8

)

Number of Cores

Hybrid-Barrier
MPI-Original

Hybrid-Advanced

Figure 4: Strong Scaling (Atoms Per Sec)

In this section, we present strong and weak scalability evaluation

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 5000

 128 256 512 1024

T
im

e
(m

s)

Number of Cores

Hybrid-Barrier
MPI-Original

Hybrid-Advanced

Figure 5: Strong Scaling (Time)

results. These experiments were executed on Cluster A. We report
the performance (number of atoms transferred per second) and to-
tal execution Time. Figure 4 and Figure 5 depict the strong scaling
results. In these experiments, we kept a constant problem size (128
* 128 * 128) and varied the scale of the system from 128 cores to
1,024 cores. From the Graph, we can see that the existing MPI ver-
sion and our proposed versions scale well from 256 cores to 1,024
cores. The performance results indicate that the Hybrid-Advanced
design exhibits good strong scalability. For our Hybrid-Barrier de-
sign which uses shmem_barrier there is a large degradation at 1,024
cores. This is expected due to the global barrier.

 0

 2

 4

 6

 8

 10

 12

 14

 16

 256 512 1024

A
to

m
s

P
er

 S
ec

 (
e+

0
8

)

Number of Cores

Hybrid-Barrier
MPI-Original

Hybrid-Advanced

Figure 6: Weak Scaling (Atoms Per Sec)

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 256 512 1024

T
im

e
(m

s)

Number of Cores

Hybrid-Barrier
MPI-Original

Hybrid-Advanced

Figure 7: Weak Scaling (Time)

Figure 6 and Figure 7 show the Weak scaling results. In these ex-
periments, we increased the number of processes used and the in-
put size at the same rate. The input size per core was kept constant

based on a 128 * 128 * 128 grid for 256 cores. We can see that the
Hybrid-Advanced version also performs better in the weak scaling
tests than all other implementations.

5. CONCLUSION AND FUTURE WORK
In this paper, we have presented an analysis of existing MPI based
MiniMD and identified its dominant communication routines. Based
on these observations, we proposed two alternative designs of Min-
iMD using MPI and OpenSHMEM models. Performance evalua-
tions using MVAPICH2-X show a 17% reduction in total execution
time compared to the existing MPI based design at 1,024 cores.
Scalability analysis shows that the proposed Hybrid-Advanced de-
sign can achieve both good strong and weak scalability. In the fu-
ture, we plan to continue working along these directions. We are
interested in evaluating our design at a larger scale with different
hardware architectures. Last but not least, we would like to re-
design other real world MPI applications using MPI and OpenSH-
MEM and demonstrate the benefits.

References
[1] J. Dinan, D. Larkins, P. Sadayappan, S. Krishnamoorthy, and

J. Nieplocha. Scalable Work Stealing. In Proceedings of
the Conference on High Performance Computing Networking,
Storage and Analysis, 2009.

[2] Dongarra, Jack and Beckman, Pete and Moore, Terry and
Aerts, Patrick et al. The International Exascale Software
Project Roadmap. Int. J. High Perform. Comput. Appl.,
25(1):3–60, Feb. 2011.

[3] M. A. Heroux, D. W. Dorfler, P. S. Crozier, J. M. Willen-
bring, H. C. Edwards, A. Williams, M. Rajan, E. R. Keiter,
H. K. Thornquist, and R. W. Numrich. Improving Perfor-
mance via Mini-Applications. Technical Report SAND2009-
5574, 2009.

[4] J. Jose, K. T. Sreeram Potluri, and D. K. Panda.
Designing Scalable Graph500 Benchmark with Hybrid
MPI+OpenSHMEM Programming Models. In International
Supercomputing Conference (ISC), 2013.

[5] MVAPICH2-X: Unified MPI+PGAS Communication
Runtime over OpenFabrics/Gen2 for Exascale Systems.
http://mvapich.cse.ohio-state.edu/.

[6] R. W. Numrich and M. A. Heroux. A Performance Model
with a Fixed Point for a Molecular Dynamics Kernel. Com-
puter Science - Research and Development, 23(3-4):195–201,
2009.

[7] S. Pophale, H. Jin, S. Poole, and J. Kuehn. OpenSHMEM
Performance and Potential: A NPB Experimental Study. In
Proceedings of the 1st Conference on OpenSHMEM Work-
shop, Oct 2013.

[8] R. Preissl, J. Shalf, N. Wichmann, B. Long, and S. Ethier. Ad-
vanced Communication Techniques for Gyrokinetic Fusion
Applications on Ultra-Scale Platforms. In Conference on Par-
titioned Global Address Space Programming Models (PGAS),
2011.

[9] H. Shan, F. Blagojević, S.-J. Min, P. Hargrove, H. Jin,
K. Fuerlinger, A. Koniges, and N. J. Wright. A Programming
Model Performance Study Using the NAS Parallel Bench-
marks. Sci. Program., 18(3-4):153–167, Aug. 2010.

[10] TACC Stampede Cluster. http://www.xsede.org/resources/overview.

