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Abstract

HiPerSAT, a C++ library and associated tools, pro-
cesses large EEG data sets with statistical data whiten-
ing and ICA (Independent Component Analysis) meth-
ods. The library uses BLAS, LAPACK, MPI and
OpenMP to achieve a high performance solution that
exploits available parallel hardware. ICA is a class
of methods for analyzing a large set of data samples
and deducing the independent components responsi-
ble for the observed data. ICA is used in FEG sig-
nal analysis to understand neurological components of
dynamic brain activity. We present two ICA imple-
mentations (FastICA and Infomaz) that exploit par-
allelism to provide an EEG component decomposition
solution of higher performance and data capacity than
current MATLA B-based implementations. Ezperimen-
tal results and the methodology used to obtain them are
presented. In addition, the integration of this function-
ality into the MATLAB-based EEGLAB tools [6] is
described, as well as future plans for this research.

1. Introduction

EEG (Electroencephalography)! is a technique for
measuring changing electrical potentials on the scalp
surface that occur as a result of dynamic brain func-
tion. Typically, the procedure involves placing multiple
sensors on various regions of the scalp. These sensors
have the ability to measure electric potential changes
with microvolt sensitivity.

It is well-established [10] that electrochemical events
within the brain can manifest as surface potential

1Most of the techniques described here for EEG apply equally
well to the sibling technique of MEG (Magnetoencephalography),
which measures magnetic rather than electrical fields.

changes on the scalp. There are both clinical and re-
search procedures which use this EEG data to infer
physiological phenomenon, trauma and mental states.
For example, EEG is used in the diagnosis and treat-
ment of epilepsy, as well as to understand the cognitive
basis of language.

Conventional EEG uses a small number (typically
from 8 to 32) of sensors placed evenly about the scalp.
Dense-array EEG ([21]) is a technique of using a fine-
grained almost spherical mesh of sensors on the scalp,
face and neck in order to provide an greater resolu-
tion of brain dynamics. Dense-array EEG uses any-
where from 64 to 256 sensors, each of which is sampled
many times per second (250hz is a typical sampling
rate). Collecting 15 minutes of EEG data from a 128-
channel sensor mesh will result in more than 100Mb of
data. Advances in EEG continue to increase both sen-
sor density and sampling rate, resulting in even larger
data sizes.

The challenge of using scalp-based data is that each
sensor is actually measuring surface potential changes
caused by a combination of underlying signals from var-
ious sources within the brain, as well as extra-brain
sources. These signals are transmitted to the scalp
via volume conduction through the various tissues and
bone in the head. Thus, each sensor is actually re-
ceiving a mixture of different signals, and a given sig-
nal (e.g., from a firing neuron) may be received by
several or all of the sensors, and at different intensi-
ties. In addition, there is a very low signal-to-noise
ratio, with sources of noise including electrical equip-
ment and physiological phenomenon such as eyeblinks,
and heartbeats.

For meaningful information to be extracted from
EEG data, the signal mixtures at each sensor must
be separated into several components, each of which
represents a more fundamental, independent physical
cause or signal. Some of these components will cor-



respond to artifacts such as eyeblinks, heartbeats and
in some cases, the experimental apparatus. A useful
technique for separating these components from signal
mixtures is Independent Component Analysis (ICA),
where the extracted components describe temporally
independent activities from spatially fixed overlapping
sources.

By combining the high-resolution data provided by
dense-array EEG with sophisticated data mining tech-
niques such as ICA, researchers hope to develop ways
to ”see” into the neurophysiological and cognitive pro-
cesses within the brain. However, the state-of-the-
art in the EEG/MEG community is constrained by
sequential execution of ICA algorithms within com-
putational frameworks (e.g., MATLAB) with memory
limitations and other overheads. Our work overcomes
these limitations by providing high-performance, par-
allel implementations of two popular ICA algorithms,
FastICA and Infomazx. We have implemented a C++
library, HiPerSAT (High Performance Signal Analysis
Toolkit), which provides functions that facilitate the
separation of EEG data via both the FastICA and In-
fomax techniques. In addition, we have built a tool,
hipersat, which allows easy access to this function-
ality from a command line. Finally, we have inte-
grated HiPerSAT into the EEGLAB [7] framework, a
MATLAB-based application that is used by neurosci-
entists to analyze and visualize EEG data.

The HiPerSAT implementation of these ICA meth-
ods provides a significant advantage over the existing
MATLAB-based algorithms in two ways: time required
for execution and maximum data size. The reduction
in wall-clock time provided by HiPerSAT was one of
the primary motivators for this research. However, an
equally significant feature of HiPerSAT is its ability to
handle much larger data sets than MATLAB can man-
age efficiently. The usual workaround for this problem
in EEGLAB is to partition the dataset into smaller sets
of samples. HiPerSAT is able to process large datasets
efficiently without partitioning. Both of these space
and time benefits of HiPerSAT become more signifi-
cant as EEG hardware increases in channel density and
sampling rate.

2. Background and Mathematical Foun-
dations

Although the actual EEG measurements are cap-
tured via an electrical device that is mechanically and
electrically attached to a biological organism’s scalp,
for the purpose of this paper we can abstract all of
this into the realm of the digital. The primary func-
tion of an EEG device is to use analog-to-digital con-
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Figure 1. Sensor Voltage over time

version hardware and software to discretize the con-
tinuous potential changes on the scalp over time into
a fine-grained digital form. Modern dense-array EEG
devices produce a stream of time-based data, typically
sampled at 250hz. Each sample describes the voltage
at each of the scalp sensors. In some cases, this volt-
age is expressed as an integer within a device-specific
range. In other cases, the voltage is expressed as a real
number indicating the actual voltage.

Figure 1 illustrates how the voltage for a hypothet-
ical 2-sensor EEG measurement varies over time. The
horizontal axis corresponds to time, with each unit be-
ing a time sample (1/250 sec). The vertical axis is the
voltage that was measured at that time. In this dia-
gram, each channel is plotted against a common time
and voltage coordinate system. Different curves (also
known as traces) show the evolution of each channel’s
voltage over time.

Figure 2 is a graph showing the measured voltages
for an actual 69-sensor EEG measurement sampled ev-
ery 1/250second over a period of one second. Each
channel is represented as a separate line or trace with
its own y-axis, sharing a common time axis. This type
of diagram is known as an electroencephalogram (EEG)
and is the familiar two-dimensional representation of
the multi-channel, time-ordered voltage data from the
scalp sensors.

When this type of data is processed, it is digitized
into a matrix form for ease of manipulation. We can
formally describe the data output of an EEG device
with n sensors as a time-ordered series of vectors xy,
each of which has length n, where x;[j] is the voltage at
sensor j at time t. This is best viewed as a rectangular
data matrix, where each row (also known as a channel)
represents a particular sensor’s voltage over time, and
each column corresponds to a particular time point. It
is this data matrix that is the fundamental input for
ICA methods. This sensor data matrix x contains all
of the measured scalp data over time.
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Figure 2. One second of 69-channel EEG

In component analysis, the potentials measured in
x are assumed to be mixtures of one or more under-
lying fundamental signal components. The proportion
of each component’s activity measured at a sensor is
determined by the component’s scalp map, which is
the vector function which describes how a given com-
ponent’s influence is spread out between the various
sensors. Different component analysis methods make
different assumptions about the relationship between
these signal mixtures and their sources.

The goal of ICA as applied to EEG data is to explain
the observed matrix x of signal mixtures in terms of
two other quantities:

e s - A matrix of time-ordered values corresponding
to posited independent source signal components

e A - A mizing matrix that accounts for how the
independent signal components in s are mixed into
the observed scalp signal mixtures x.

The columns of A describe spatial distribution of com-
ponent activity.

Formally, we wish to solve the Equation 1 for both
A and s, given that we have a measured set of mixtures
X:
x = As (1)
In order to derive A, it is sufficient to derive W, also
known as the unmizing matriz, such that:

A = wW! (2)
s = Wx (3)

Most ICA algorithms are based upon finding the un-
maixing matrix W, as it is this matrix that allows the
independent components s to be extracted from the set
of signal mixtures x.

Without any other constraints or assumptions,
Equation 1 and Equation 2 have an infinite number
of solutions. However, ICA makes a few critical as-
sumptions that restrict the set of solutions to a small
set of possible solutions, ideally with a single most-
likely solution. ICA assumes that the input data are a
mixture of temporally independent components whose
sources are spatially fixed over time. This means that
knowledge of s;[i] for a given sample s; provides no
information about s;[j].

ICA relies upon the fact that the probability distribu-
tion function (pdf) of a truly independent component
is non-gaussian, whereas the pdf of a mixture of com-
ponents follows a gaussian distribution. This result
derives from the Central Limit Theorem of statistics,
which says that the sum of a set of independent random
variables has a gaussian pdf. Because a signal mixture
is actually a sum of its independent components, we
would expect that a mixture is more gaussian than a
component that contributes to it. These constraints
are used by ICA methods to determine A and s, given
a sufficiently large set of samples x. Most ICA meth-
ods require that the number of samples exceeds sev-
eral times the square of the number of channels. De-
tailed information on the mathematics underlying ICA
is available in [1] and [19].

An example of how the independent components are
extracted from signal mixtures is shown in Figure 3.
The left figure shows a signal mixture of four inde-
pendent components (in this case, distinct synthetic
sinusoidal signals). The right figure shows the resul-
tant independent components as extracted by FastICA.
What is remarkable is how the underlying components
are discovered within the apparent chaos of the input
mixtures.

2.1. Data Whitening

Both of the ICA algorithms that we have chosen to
implement, FastICA and Infomax, make the assump-
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Figure 3. EEG Mixture and Components

tion that the input data x has been whitened. Whiten-
ing or sphering data is a process whereby the origi-
nal mixture data x is multiplied by a matrix S, (the
sphering matrix) to produce a set of whitened data that
is uncorrelated with 0 mean and unity variance.

In Equation 2 above, the unmixing matrix W is ap-
plied to the mixture data x to generate the independent
components. Because the ICA algorithms assume that
x has been whitened, it is necessary to preprocess the
data x by applying the sphering matrix S, to x. This
produces a set of whitened data x’ = S,,x which is
amenable to the ICA algorithms (Equation 4).

s = Wx (4)
= WS, Spnx (5)
= Wegx' (6)

where W is known as the weight matriz and x’ is the
whitened data. Because Wy is an orthogonal matrix,
it acts as an additional constraint on the constrained
optimization problem that is the heart of ICA, thus
speeding convergence to a solution.

2.2. Infomax

One of the earliest ICA algorithms was described by
Bell and Sejnowski [3] as an information-mazimization
or infomazx algorithm. Infomax derives a weight matrix
Wy that maximizes the statistical independence of the
components by using an algorithm which minimizes the
redundancy amongst outputs of a neural net. This is
done by using a sigmoidal nonlinearity to estimate the
data’s higher-order moments. This ensures that the
resultant components are maximally independent and
non-gaussian.

2.3. FastICA

Infomax is the primary algorithm used within
EEGLAB. Another form of ICA is encapsulated in
the FastICA method, first described in [16] and im-
plemented in MATLAB as [14]. FastICA works by

searching for a weight matrix that maximizes the non-
gaussianity of the resultant components. Any mixture
of non-gaussian random variables will be more gaus-
sian than the variables themselves (Central Limit The-
orem of statistics). Therefore, it is possible to use non-
gaussianity as a measure of statistical independence.
FastICA uses this fact by building up a weight matrix
column-by-column, where each column maximizes the
non-gaussianity of the corresponding component.

Non-gaussianity and therefore, independence, is
maximized indirectly by computing and maximizing a
contrast function. Different contrast functions can be
used, although the use of kurtosis and negentropy have
been shown to provide a good trade-off of speed and
reliable convergence.

3. Related Work

Tucker et al [21] at the University of Oregon have
pioneered and advocated the use of dense-array EEG
measurements. Makeig’s group at SCCN (Swartz Cen-
ter for Computational Neuroscience) [10] has led the
field in the use of ICA for discovering underlying com-
ponents and for removing artifacts from such data.
This group has developed the EEGLAB toolkit [7] that
offers EEG analysis and visualization, including data
analysis based on various ICA algorithms. In particu-
lar, the runica() function within EEGLAB is an im-
proved implementation of the infomax algorithm as de-
scribed by Bell and Sejnowski [3]. It is this MATLAB
version of the algorithm that was used as a standard
of correctness when implementing HiPerSAT’s parallel,
C++ version.

ICA and the techniques known as factor analy-
sis and principal component analysis (PCA) are both
forms of blind source separation, which is the prob-
lem of determining the components sources in a set
of mixtures, without having prior knowledge of how
these sources are mixed. These algorithms solve essen-
tially the same problem, but make different assump-
tions about the underlying data. ICA is different from
PCA in that it minimizes the correlation of higher-
order statistical moments. The blind source separation
problem is also known as the Cocktail Party Problem
[13] because of the way that a human brain can pick out
the distinct conversations occurring simultaneously at
a hypothetical cocktail party with multiple concurrent
conversations.

Information about ICA methods can be found in [1]

and [19], and several of the sources mentioned in the
bibliography.



4. Architecture of HiPerSAT

The immediate goal of HiPerSAT is a high-
performance implementation of two distinct ICA al-
gorithms, FastICA and Infomax. Longer term, we en-
vision HiPerSAT as a library framework for a family
of EEG analysis methods, including wavelet analysis.
The HiPerSAT design is based on a common set of util-
ity code for I/O, data structures, and mathematical
and statistical computations. In addition, it supports
flexible parallelism models that can be reused depend-
ing on the analysis algorithm requirements.

The HiPerSAT library provides processing modules
corresponding to the data transformations of Whiten-
ing, FastICA and Infomax, respectively. A given invo-
cation of HiPerSAT will combine the Whitening mod-
ule with either FastICA or Infomax, which will operate
upon the whitened data. The HiPerSAT library and
tools are C++ code that builds upon several different
third-party technologies. These third-party technolo-
gies can be broken into two categories:

1. Mathematical libraries and data structures -
BLAS, LAPACK, ATLAS

2. Interprocess communication and parallelism sup-
port - MPI, OpenMP

hipersat tool | user-written main
Whitening | | Infomax | FastICA
OpenMP MPI

BLAS |LAPACK

Figure 4. Component-level architecture of
HiPerSAT

The HiPerSAT component-level architecture is illus-
trated in Figure 4. Basically, there are three indepen-
dent signal processing modules corresponding to the
data transformations of Whitening, FastICA and In-
fomax, respectively. Typically, a given invocation of
HiPerSAT will combine the Whitening module with ei-
ther FastICA or Infomax, which will operate upon the
whitened data.

4.1. Parallelism Mechanisms
HiPerSAT is capable of solving large problems using

FastICA or Infomax running in sequential mode with-
out requiring any parallel capabilities. However, the

implementations achieve greater performance (see Sec-
tion 9 below) when they are run in a parallel-capable
environment. The current HiPerSAT implemention of
FastICA relies upon MPI (running multiple processes)
for its parallelism, whereas HiPerSAT’s Infomax imple-
mentation uses OpenMP (single-process, shared mem-
ory, multiple processors). Our initial choice of par-
allelism method is due to dependency analysis of the
original algorithms.

There are several implementations of MPI available,
including Intel’s MPI, and the open-source MPICH [11]
and LAM-MPI [12] [18]. The HiPerSAT performance
results for FastICA we report here are based upon
MPICH. OpenMP [17] is compiler-dependent and we
make use of different OpenMP-compatible compilers
in our work, including IBM’s x1C and Intel’s icc.

4.2. Mathematics Libraries

Much of the matrix, vector, and linear algebra func-
tionality needed by HiPerSAT is provided by two well-
known linear algebra libraries, BLAS (Basic Linear Al-
gebra Subprograms) [9] and LAPACK (Linear Alge-
bra PACKage) [2]. Modern platforms provide high-
performance, C-accessible, threadsafe implementations
of both LAPACK and BLAS. The HiPerSAT imple-
mentation uses the Intel MKL (Math Kernel Library)
or IBM ESSL (Engineering and Scientific Software Li-
brary) to provide high-performance versions of BLAS
and LAPACK.

5. Overview of HiPerSAT Usage

The basic tasks of HiPerSAT are:
1. Obtain input data, in the form of a matrix x.

2. Whiten data by computing sphering matrix S,
such that S,,x = x/, where the rows in x’' are
uncorrelated with each other.

3. Search for a weight matrix W such that will un-
mix the whitened signal mixtures x’ into a set of
independent source signals s.

4. output the computed weight matrix, sphering ma-
trix, mixing matrix A, and independent compo-
nents obtained by applying the weight matrix Wy,
to the whitened signal mixtures x’.

The HiPerSAT library is a set of C++ classes used to
perform these steps. The hipersat program uses these
classes in a utility accessible via a command line.



5.1. Command Line Utility

The behavior of the hipersat program is specified
via a parameter file which is passed as an argument to
hipersat. For example, the command:

> hipersat myICA.txt

will cause the hipersat program to read ICA parame-
ters from file "myICA.txt”. These parameters include
such information as the names of the input and output
files as well as various parameters such as algorithm
(FastICA vs Infomax), learning rate and convergence
tolerance.

The hipersat program will initiate the sequential
or parallel execution and then invoke the Whitening,
FastICA, and Infomax methods in the correct order,
based upon the values in the the parameter file.

5.2. Integration into EEGLab

EEGLAB is a widely-used neuroscience application
produced by SCCN [7] that provides visualization, fil-
tering, and analysis of EEG data in a powerful, GUI-
based environment. One of the features of EEGLAB
is the ability to perform one of several ICA methods
upon EEG data. By default, EEGLAB will execute a
MATLAB-based version of Infomax.

We have extended EEGLAB’s ICA calling interface
to enable the convenient execution of HiPerSAT’s In-
fomax and FastICA versions. Normally, an EEGLAB
user loads an EEG data file and executes EEGLAB’s
runica method. If the user instead selects either
nic-fasticaornic-infomax as the type of algorithm,
then the EEG data will be exported to a disk file and
the hipersat tool will be invoked. After hipersat
completes, the resulting independent components and
other output data are imported back into EEGLAB for
subsequent display and analysis.

6. FastICA Execution

As mentioned above, HiPerSAT implements two dif-
ferent algorithms, FastICA and Infomax, each using
their own parallelism mechanism, MPI and OpenMP,
respectively. This section describes the FastICA imple-
mentation in detail. Section 7 describes the details of
the Infomax implementation. The overall dataflow in
FastICA is:

1. start processes on head and remote nodes
2. load parameters and replicate to workers

3. load data and distribute amongst workers

4. optionally whiten the data
5. compute weights using FastICA algorithm

6. output components, weights, sphering matrix
6.1. Process Creation

The HiPerSAT FastICA/MPI implementation as-
sumes that there are one or more separate processes
that run and communicate via MPI. The MPI execu-
tion model that we use in FastICA assumes that there
is one machine or node (the head node) that is the
machine where the user will initiate execution of a Fas-
tICA run of HiPerSAT. The user will initiate execution
by using the MPI-provided mpiexec command, which
ensures that the hipersat command will be executed
on the head node and on a set of specified additional
worker nodes, separate machines where HiPerSAT is
installed. The mpiexec command uses various mech-
anisms (e.g., ssh, rsh, exec) to securely log in as the
initiating user on the worker nodes and start up replicas
of hipersat on each node. It is possible to run sev-
eral instances of hipersat on a given node, although
CPU-level parallelism is reduced in this case. After
mpiexec has created processes on the head node and
any worker nodes, the execution of the hipersat main
program will begin in each of these processes.

Start Processes
on head and remote node ($)

V

< Load/Distribute Parameté}s

V

< Load/Partition EEG Daga
Vv
< Whitening>
Vv

Compute Weights
FastICA

Vv

Output Results
IC, Weights, Sphere, et

Figure 5. Dataflow in FastiICA/MPI



The FastICA/MPI algorithm outlined above re-
quires that the head node is distinguished during im-
port and export of the EEG data and parameters, but
during the actual computation of weights there is vir-
tually no distinction made between the initiating head
node and the worker nodes. Effectively, the head node
is a worker node. In the description of the algorithm
below, most references to worker nodes will refer to ei-
ther the head node or a worker node. Where the head
node and worker nodes have different behavior, this
will be noted.

6.2. Parameter Input and Distribution

Because only the head node is able to read the in-
put parameter file (no shared filesystem is assumed),
it is necessary for the relevant parameters to be dis-
tributed to all of the worker MPI processes so that the
head node and workers have a common set of operating
parameters. This step is performed before the actual
data file(s) are loaded and processed.

Early in the execution of HiPerSAT, the head node
uses MPI_BCast to transmit a copy of the parameter file
to the workers. After this point, the head nodes and
workers have a common set of operating parameters.

6.3. Data Input and Distribution

Similar to the parameter distribution mechanism
above, the actual input EEG data file must be dis-
tributed to the workers by the head node (no shared
filesystem is assumed).

In the FastICA algorithm, if we have m samples in
the input data set, and there are p total MPI processes,
then each worker will get m/p samples from the original
data file. worker0 (the head node) will have samples
0 through m/p — 1, workerl will have sample m/p
through 2m/p—1, and so on. If the number of samples
is not evenly divisible by the number of MPI processes
p, then the remainder of the samples will be given to
a subset of the processes (i.e., some processes will have
m/p + 1 samples). The subset of samples allocated to
a worker is called a partition.

The purpose of this phase of FastICA processing is
to ensure that the entire input file is loaded into an ef-
fectively distributed memory, which in this case spans
multiple processes. No single process has the entire
EEG data in its address space; instead, the set is par-
titioned amongst the head node and workers. Many of
the subsequent stages in the algorithm are performed
in parallel, with each hipersat process executing in-
dependently with periodic data exchange and synchro-
nization between the processes.

6.4. Data Whitening

The whitening of the input data is parallelized in
the HiPerSAT FastICA algorithm. Here, each worker
computes the covariance of its partition in parallel,
and then combines the resultant matrix with a call to
MPI_Reduce, which sums the various per-worker covari-
ance matrices.

The time for data whitening is neglible compared
to the time required for either FastICA or Infomax.
Hence, we do not report on the whitening time in this
document.

6.5. FastICA

After the data has been loaded and whitened (either
within HiPerSAT or prior to execution), each worker
process will contain a whitened version of its parti-
tion’s data. At this point, the FastICA algorithm
properly begins with each worker process executing the
method searchForWeights (), which is responsible for
computing a weight matrix W that properly separates
the whitened signal mixtures into independent compo-
nents.

The method searchForWeights described in Algo-
rithm 1 will compute Wy one row at a time, with
each row w corresponding to the weight vector that
extracts one particular component from x’. Let n be
the number of input signal mixtures and the number
of desired independent components; Wy is therefore
a n X n matrix and w is a vector of length n. Let m
be the number of actual data samples in x’.

Algorithm 1 FastICA searchForWeights

Require: x’' has been whitened
Ensure: s = Wgx' and s is maximally independent.
{P is projection matrix} {Wg¢ is output weight ma-
trix}
P < makeZeroMatrix( n )
Wyt < makeZeroMatrix( n )
{For each desired component...}
fori=0ton—1do
MPI Broadcast of w
w < computeWeight( P, i, x )
P < RanklUpdate( P, w )
Wi < addWeightToMatrix( P, w )
end for

Algorithm 1 will initialize two square matrices P and
Wy and will then compute the n weights necessary to
fill in Wg¢. The projection matrix P is maintained
to ensure that computeWeight() can generate a new



weight that is orthogonal to all of the previously found
weights.

The RanklUpdate function updates the projection
matrix P with the computed version of w. The
addWeightToMatrix function simply copies the weight
vector into the resultant weight matrix.

From a computation point of view this function is
interesting in that it shows that the computeWeight
function is called n times. Except for the trivial lin-
earity in n, the function computeWeight described in
Algorithm 2) will contain all of the computational com-
plexity.

Algorithm 2 FastICA computeWeight( B, i, x )
w <= initializeWeight( i )
w <= orthogonalize( w, B )
w < normalize( w )
{w is now a starting weight vector}
{Use Fixed-point method (ala Newton) to converge
this component’s weight}
delta < 100000
while delta > tolerance do
w’ < improveWeight( w, x )
MPI Reduce - Sum, then share, all the w
delta < estimateConvergence( w, w’ )
end while

Algorithm 2 (computeWeight) will perform a num-
ber of iterative calls to improveWeight, which takes
an existing weight vector and the entire data matrix
and computes a better weight vector. This iterative
process (based upon Newton’s method) of weight vec-
tor improvement continues until a user-specifed num-
ber of iterations has passed, or a fixed-point has
been met within some user-specified tolerance. The
estimateConvergence function is trivial and is O(n);
it simply computes a distance function between w’ and
w.

This means that the bulk of the performance cost
is in the improveWeight algorithm, described in Algo-
rithm 3. The mathematical basis for this algorithm is
derived in [16] [15]. Essentially, there is a fixed point
convergence relation (Equations 7,8) that uses a gra-
dient method to maximize the non-gaussianity of the
product w’x, which is the projected independent com-
ponent extracted by w’.

W= B{xg(w'x)} - E{g'(wTx)}w ()
woo= w/[|w] (8)
Because the expectation of these random variables

is unknown a priori, the algorithm relies upon sam-
pling the available data to get an estimate of the above

expectations. This will require traversal of the data
samples, and is one of the reasons why the algorithm
takes longer as more samples are added. Because of the
properties of whitened data and non-gaussian compo-
nents, the generalized Equation 7 can be simplified into
the actual formula that is used to compute new weights
within the FastICA algorithm. This eliminates several
matrix-matrix multiplies and matrix inversions, reduc-
ing some of these to rank-one updates (a much simpler
matrix operation). This derivation is detailed in the
various FastICA references [14].

The function g() is known as the contrast function
and it and its derivative ¢’() are used to evaluate the
gaussianity of a signal component as generated by
w’x. HiPerSAT supports three different contrast func-
tions: cubic, tanh, and gaussian. The cubic contrast
function is used to measure the kurtosis of the sepa-
rated components, the tanh contrast function measures
the negentropy of the components, and the gaussian
function measures the gaussianity of the components.

The HiPerSAT implementation contains a version
of improveWeight for each of these contrast functions.
Each version of improveWeight shares the same ba-
sic loop structure, with subtle differences in how the
contrast function and its derivative are used for each
element in the loop. From a computation point of view,
however, we only need concern ourselves with the scal-
ing considerations due to the loop structure.

Algorithm 3 FastICA improveWeight( w, x )

Ensure: Return improved weight w'.
w <= w
{For each sample 1...m}
for i=0tom—1do
{For each component 1...n}
for j=0ton—1do
w'[j] <w'[j] + contrast( w, x, j )
end for
end for

The actual contrast() function used in Algo-
rithm 3 will be based upon one of the three supported
versions of g() and ¢’ in Equation 7 (cubic, tanh, and
gaussian).

6.6. Result Gathering and Output

After FastICA successfully converges on a weight
matrix that satisfies the convergence criteria specified
by the problem, HiPerSAT will optionally export to
disk the discovered weight, sphering, mixing and un-
mixing matrices.



HiPerSAT can optionally export the separated com-
ponents as an output EEG file. Because each worker
has a separate partition of the input data, exporting
the separated components is performed by the head
node by gathering each worker’s partition of separated
component data and writing it to disk.

Start Process
Start OpenMP thread

V

< Load Parameter%

V

< Load EEG Dat%
V
< Whitening (optiona£>

V

Compute Weights
Infomax

V

Output Results
IC, Weights, Sphere, etg.

Figure 6. Dataflow in Infomax/OpenMP

7. Infomax Execution

The Infomax implementation within HiPerSAT re-
lies upon OpenMP for its parallelism. One of the po-
tential advantages of an OpenMP approach is the abil-
ity for each separate thread to share the input EEG
data, as well as access any shared data structures (e.g.,
the current weight matrix).

The execution of Infomax is outlined below:

1. start process

load parameters

load data

optionally whiten the data

create one or more worker threads

compute weights using Infomax algorithm

N o e

output components, weights, sphering matrix

7.1. Parameter and Data Input

The parallel workers of HiPerSAT /Infomax are im-
plemented as threads within a single process, with each
thread having access to the same shared data in mem-
ory. This obviates the need to explicitly partition and
distribute the parameters and data amongst the work-
ers; similarly, the exporting of the separated compo-
nents does not require that the partitions are gathered
prior to exporting. This makes reading in the param-
eters and input data a trivial operation. In the Info-
max/OpenMP algorithm, a single process contains the
entire EEG input data set.

7.2. Data Whitening

Data whitening in Infomax is identical to the stan-
dalone (non-parallel) version of data whitening used in
FastICA. The whitening process is not yet parallelized
in Infomax, but may be in future versions.

7.3. Infomax

After the input has been loaded and whitened, the
HiPerSAT process will contain the entire input data
set in memory, accessible to all of the worker threads.
At this point, the Infomax algorithm begins with
searchForWeights() as described in Algorithm 4. Af-
ter initializing the per-process data structures, the al-
gorithm splits into several concurrent threads, each of
which has a distinct value for the pid variable.

Each of these threads will perform identical work
until parallelized loops are executed within TrainNN
(see Algorithm 5). It is this TrainNN function which is
measured when the Infomax iteration cost is reported
in the graphs and tables in this document.

Algorithm 5 describes TrainNN in more detail. This
function works by partitioning the input data into dis-
joint rectangular blocks consisting of the n channels for
a small (approximately 35) number of samples. The
ordering of these blocks is randomized as part of the
algorithm to ensure that any temporal bias in the data
is eliminated.

As each parallel thread proceeds, it will obtain the
same block as the other threads (no parallelism yet).
At this point, however, the chosen block (called x) is
traversed in parallel such that each OpenMP thread
will operate on a fraction of the columns within a
block. For example, if the block x has 36 columns and
there are 4 threads, then thread 1 might get columns
1,5,9,..., thread 2 might get columns 2,6, 10, ... and
SO on.

2This ability to parallelize a loop is one of the advantages of



Algorithm 4 Infomax searchForWeights()
Require: initiallW = random matrix of weights
Require: tolerance = user-specified tolerance
Require: & = matrix of input signal mixtures
W <& initial WMatrix
oldW «W
WDelta < makeZeroVector(n)
oldWDelta < makeZeroVector(n)
bias < makeZeroVector(n)
initDelta < makeZeroVector(n)
OpenMP - In Parallel, for each thread pid
while delta > tolerance do
trainNN( pid )
if pid = master Pid then
OpenMP - Master only, other threads wait
adjustLearning( pid )
end if
end while

Within this first parallel for loop, we are computing
a new rectangular matrix u which is the same size as x.
This u matrix will contain the projected components
Wx, plus a bias vector b. The matrix multiplications
within this parallel for loop will occur in parallel, af-
fording a p-way speedup for this section of code if there
are p processors available for OpenMP threads.

The next loop is also a parallel for loop which ap-
plies an activation function to the biased component
block u, resulting in a new block matrix such that y <
activation( u ). This activation function is used to
evaluate the biased components in u to determine how
the current weight matrix candidate w should be mod-
ified.

Finally, the updateWeights function will use the
bias vector b to compute a new version of w and will
update the weight matrix W accordingly. This con-
tains a minor parallel loop and then a master-only loop.

7.4. Result Output

Writing out the separated components is currently
implemented in the HiPerSAT version of Infomax in
a straightforward, yet memory-wasteful, fashion. Cur-
rently, a new matrix as big as the input data matrix
is allocated and filled with the separated components.
Then, this matrix is exported to disk. An obvious im-
provement planned for HiPerSAT Infomax is to com-
pute the separated components on the fly as they are
output. This would reduce the memory requirements

the OpenMP approach. It relies upon each of the per-column
operations being independent of every other one.

Algorithm 5 Infomax trainNN( pid, X )

for outer = 1...numBlocks do
for blockCol =1...blockCols do
OpenMP - Parallel for loop body
index < shuf fle(outer + blockCol)
x < X[index]
w < Windex]
{u = W*x + bias}
u[blockCol] < Wx
u[blockCol] <= ulblockCol] 4+ bias
end for
numBlockCells <= block Rows x blockCols
for blockCell = 1...numBlockCells do
OpenMP - Parallel for loop body
y[blockCell] < activation( ulblockCell] )
end for
updateWeights( w, y, biasLoad )
end for

Algorithm 6 Infomax updateWeights( w, y, bl )

for blockCell =1...numBlockCells do
OpenMP - Parallel for loop body
bl[blockCell] < 1 - 2y[blockCell] )
end for
if pid = master Pid then
OpenMP - Master only, other threads wait
tmp < zeros(n)
for i =0...blockCols do
for j=0...ndo
tmplj] < tmplj] + bil, ]
end for
end for
return maz(w) > MAXWEIGHT)
end if




during the output phase by 50% and would likely im-
prove performance during this phase.

8. Experimental Methodology

We verified the validity and efficiency implementa-
tions of these algorithms with a series of tests. The va-
lidity tests ensured that we gave the correct answers, as
defined by the EEGLAB implementations of these algo-
rithms. We have validated that the results are virtually
identical for a variety of both real and synthetic data
sets. We have compared the results of the EEGLAB
versions of Infomax and FastICA with the correspond-
ing HiPerSAT results and they match almost exactly.

The efficency tests evaluate the performance of the
algorithms on various hardware/software configura-
tions, as well as to understand how this performance
changes based upon the dimensionality of the data and
the processing parameters. We focus on execution time
efficiency. We performed timed tests on a variety of
hardware/software configurations, upon a variety of
data set sizes. The platforms that we tested are listed
in Table 1.

Table 1. Tested HiPerSAT Platforms

Name Processor(s) Parallelism
Mac G4 PowerPC G4 sequential only
Neuronic Xeon (2xCPU) 16xMPI/4xOpenMP
P655 (IBM) 8x1.5Ghz POWER4 8xOpenMP /8xMPI
P690 (IBM) 16x1.3Ghz POWER4 | 16xOpenMP/16xMPI
Optix (SGI) | 16x1.5Ghz Itanium2 | 16xOpenMP/16xMPI

The primary data set used was from a psychology
study in which subjects were given various stimuli and
asked to perform a reading task. The purpose of the
experiment is to determine whether there are partic-
ular electrical sources within the brain during certain
evoked neural states, and if so, to isolate these compo-
nents from the mixture data available at the scalp via
EEG.

The basic metric of the input data size is its dimen-
sionality, in terms of number of channels and number
of samples. The expectation is that the problem com-
plexity is proportional to the square of the number of
channels and linearly proportional to the number of
samples. The number of channels used in these ex-
periments varied from 64 to 256, whereas the number
of samples ranged from 100,000 to 10,000,000. As a
point of reference, a complete ICA decomposition using
the standard MATLAB implementations ranges in wall
clock time from 1 hour to several days depending upon
the dimensionality of the data set and the execution
platform.

The two ICA algorithms (FastICA and Infomax) are
both based upon an iterative method that achieves con-
vergence. The number of iterations varies depending
upon the content of the data its fixed dimensionality.
Therefore, different data sets of the same size could
take wildly different amounts of time to converge to a
solution. This makes the use of overall wall clock time
a less useful metric for comparing performance between
different algorithms and data sets.

In order to address the above deficiency, we use
a per-iteration time cost metric that is invariant be-
tween different data of a given dimensionality. This
per-iteration cost, Cjter, is used in the experimental
results described here. This permits more experiments
to be run, because the program is not run until con-
vergence, allowing us to explore a broader evaluation
space.

For FastICA, the iteration time measured cor-
responds to searchForWeights() described in Al-
gorithm 1. The iteration time measured for
Infomax corresponds to the time spent in the
searchForWeights() function described in the ab-
stract parallel implementation described in Algo-
rithm 4 above. In both cases, Cj, is com-
puted as Citer = totalTime;pe,/numberO fIters,
where totalTime;ie, is the measured time spent in
searchForWeights.

In both FastICA and Infomax, we used the parallel
performance analysis software TAU (Tuning and Anal-
ysis Utility) [20]. The TAU software allowed us to in-
strument the HiPerSAT source code to facilitate the
gathering of fine-grained performance information for
both MPI and OpenMP.

9. Experimental Results

Testing HiPerSAT proved to be challenging because
of the potential for an overwhelming set of combina-
tions of data file size, hardware (see Table 1), algo-
rithm (Infomax vs. FastICA), parallel processing type
(OpenMP vs. MPI vs. standalone), and processing
parameters (learning rate, convergence threshold, etc).
For the purposes of this paper, we will focus on those
results most salient to the issue of performance gains
possible via parallelism. We have restricted our anal-
ysis here to a standard number of samples (111,000
samples) in order to eliminate variability due to the
number of samples. Parallelism performance improves
with larger numbers of samples.

Because the FastICA/MPI and Infomax/OpenMP
algorithms use different parallelization approaches, we
treat these sets of measurements as incommensurate
and describe each separately. In the graphs that de-



scribe Speedup, the speedup associated with n proces-
sors is the ratio of the cost-per-iteration for n proces-
sors to the cost-per-iteration for 1 processor. Table 2
summarizes the results displayed in these graphs. The
speedup shown is maximum speedup obtained.

Table 2. Sequential Cost and Speedup for 69 x
111000 data

| Hardware/Algorithm | Citer (sec) | Speedup |

G4 MATLAB FastICA 1.21 n/a
G4 FastICA 0.3089 n/a
Neuronic MATLAB FastICA 0.1974 n/a
Neuronic FastICA 0.1319 14.6296
P655 FastICA 0.5449 7.9768
P690 FastICA 0.6286 15.9566
G4 MATLAB Infomax 11.21 n/a
G4 Infomax 4.36 n/a
Neuronic MATLAB Infomax 5.22 n/a
Neuronic Infomax 1.0892 1
P655 Infomax 3.4366 3.26
P690 Infomax 3.9838 3.2519

The performance graphs demonstrate the speedup
of the per-iteration cost for a given dataset when dif-
ferent numbers of processors are applied to the prob-
lem. Each curve corresponds to a different number
of channels (the number of samples is fixed at 111,000
samples). The speedup for an n-processor computation
is computed by dividing the per-iteration cost by the
per-iteration cost for a single processor. The diagonal
line represents linear speedup.
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10. Expected vs. Observed Results

The FastICA algorithm equally partitions the sam-
ples among the available processors. An examination
of the FastICA algorithm reveals only two significant
points where synchronization and data exchange will
occur between the various worker and head processes.
Once for every desired component, where the initial
weight vector for that component is exchanged; and
once for every iteration of weight improvement, where
the workers sum their weight estimates. All of the other
work is executed in parallel by the workers, operating
upon their own partition of the data. The computa-
tion to communication time ratio is high for FastICA,
resulting in a high level of parallel performance. The
FastICA performance graphs show near-linear speedup
for the different platforms.
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In contrast, the performance of the parallel Info-
max algorithm is more constrained. Our analysis of the
parallel Infomax algorithm shows several points where
parallelism is occurring, during neural network training
and the first part of updating the weights. We should
see performance scaling for these sections. Unfortu-
nately, the performance scaling curves indicate must
poorer performance than FastICA. The reason is that
the amount of parallel work available in OpenMP par-
allel regions is not large in relation to the sequential
computation (being done in duplicate). In addition,
the algorithm suffers caching effects due to the com-
position of blocks from random selection of samples.
These blocks are then separately processes by OpenMP
threads, but reference memory locations across the
dataset. More interestingly, we see in the performance
curves that 64-channel speedup improves better gener-
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ally than 128- and 256-channel experiments, especially
on the IBM p655. This is unexpected, but after anal-
ysis is explained by the fact that more of the data set
can be contained in the Level 3 cache memory. For 64
channels and 110,000 samples, we suspect that the en-
tirety of the dataset fits in the 32 Mbyte Level 3 cache
on the IBM p655 machine. As the number of sam-
ples increase, we should see better speedups for larger
numbers of channels.

11. Future Directions for HiPerSAT

The HiPerSAT library and tools currently provide
ICA decomposition via the FastICA and Infomax al-
gorithms. We plan to enhance the usability of HiPer-
SAT by increasing the performance of the existing al-
gorithms, as well as by implementing additional ICA
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methods that have shown promise in EEG analysis. In
addition, we will be building grid-based interfaces to
permit the remote initiation and monitoring of HiPer-
SAT tasks.

11.1. Performance

Both the FastICA and Infomax algorithms are very
processor-intensive, especially with large data sets.
The early results are promising and show the poten-
tial of exploiting parallelism for these tasks. However,
there are several potential performance enhancements
that bear investigating.

Although FastICA scales linearly with the number of
processors, we can further improve overall performance
by reading and writing the EEG data in parallel. This
can be done directly during the FastICA execution by
using MPI’s asynchronous sends and receives to paral-
lelize data distribution.

Clearly, the Infomax algorithm has room for perfor-
mance improvement. Our scaling results show a best-
case speedup of 3 running on 8 processors, and poorer
performance overall. Although OpenMP performance
is highly dependent on the platform and compiler, we
need to further investigate ways to increase the portion
of the algorithm that can operate in parallel. This in-
cludes minor changes such as adjusting the block size
used during the training of a weight vector, and major
changes such as allowing each worker thread to work on
its own block in parallel, merging the learned weights
after each step. The mathematical legitimacy of these
optimizations must be analyzed.

As mentioned in 7.4, we have come up with a more
memory-efficient way to sort and export the indepen-
dent components from Infomax in a windowed fashion
which does not require duplication of the data before
output.

Finally, we want to consider alternative parallelism

approaches, including the design of an MPI-based
Infomax, an OpenMP-based FastICA, and a hybrid
MPI/OpenMP version of both algorithms, assuming
these versions offer opportunities for improved perfor-
mance.

11.2. New ICA Features and Algorithms

The versions of FastICA and Infomax currently im-
plemented in HiPerSAT lack some features that are
present in the EEGLAB-based versions of these algo-
rithms (runica and fastica). We plan on implement-
ing these features within HiPerSAT. They include:

e For both FastICA and Infomax, the option of per-
forming PCA (Principal Component Analysis) re-
duction during preprocessing

e Optional restarts with a randomized weight ma-
trix to reduce the likelihood of a complete lack of
convergence in FastICA.

e Performing symmetric-mode FastICA instead of
deflationary-mode

e Performing extended-mode Infomax, which allows
the detection of subgaussian components.

There are a variety of other ICA algorithms that
have been conceived and implemented in MATLAB.
These algorithms differ in their assumptions about the
data, the way they measure independence, and whether
they account for temporal ordering of the data. They
include SOBI (Second-Order Blind Identification) [8],
JADE (Joint Approximate Diagonalization of Eigen
matrices) [4], and ERICA (Equivariant Robust ICA)
[5]. We will be examining these algorithms to deter-
mine their utility in the neuroscience domain and their
suitability for high-performance implementation.

11.3. Grid Execution

Our HiPerSAT implementations of ICA algorithms
require that the hipersat program operate on a par-
allel system. However, a researcher may use MATLAB
on their laptop or workstation to do much of their in-
teractive analysis. We are extending the MATLAB in-
tegration to allow remote execution of HiPerSAT tasks
on computational servers. Longer term this will utilize
a grid-enabled interface where HiPerSAT will be acces-
sible as a grid service. One important advantage that
will come from this will be the ability to use HiPerSAT
on multiple EEG data sets concurrently.



12. Conclusions

We described the ICA class of techniques and par-
allel implementations of two ICA algorithms, FastICA
and Infomax. We showed that for the large data sets
typically found in dense-array EEG research, the per-
formance provided by HiPerSAT was significant com-
pared to the sequential implementations in EEGLAB
(which do employ fast LAPACK libraries in MAT-
LAB). The speedup for FastICA was impressive while
only modest for Infomax. The ability to handle dataset
sizes larger than the MATLAB-based versions is very
important for the EEG neuroimaging community at
large.

The FastICA algorithm was shown to scale quite
nicely, with near linear speedup as additional proces-
sors are added. However, the Infomax algorithm scaled
sublinearly. This lack of parallelism and speedup in
HiPerSAT Infomax is a consequence of the current
implementation and warrants further research. How-
ever, one might ask whether this is even worth it given
the outstanding showing of parallel FastICA. Although
FastICA is faster and parallelizes better than Infomax,
it has been shown that it can fail to converge on a
solution. This appears to be especially problematic
for larger numbers of channels (e.g., more than 127).
Restarting the algorithm with new random weight vec-
tors can reduce, but not eliminate, this convergence
problem.

Although not the subject of this paper, the fact is
that the choice of Infomax versus FastICA is also one
of perceived correctness and quality of results. Neuro-
scientists will select among the various decomposition
algorithms for reasons other than performance. In-
deed, one active area of neuroscience research is the
comparison of different ICA algorithms as applied to
EEG. Different algorithms are appropriate for different
assumptions about the EEG data and the underlying
signals.

Currently, we are actively collaborating with neu-
roscience researchers at the University of Pittsburgh
in the application of HiPerSAT in cognitive language
processing studies focusing on word learning and read-
ing assessment. The EEGLAB-based ICA implemen-
tation was deficient for this work because of the large
datasets involved. HiPerSAT has also been success-
fully applied for artifact detection and cleaning in this
and other neuroscience work. In general, we see the
HiPerSAT library and tools as a direct replacement
for the EEGLAB ICA implementations, providing the
EEG/MEG community with higher performing, paral-
lel solution.
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